Skip to main content
Log in

Acetylsalicylic acid and acetaminophen protect against oxidative neurotoxicity

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Due to the implication of oxidative stress in neurodegenerative disorders we decided to investigate the antioxidant properties of acetylsalicylic acid and acetaminophen either alone or in combination. The thiobarbituric acid assay (TBA) and the nitroblue tetrazolium (NBT) assay were used to investigate quinolinic acid (QA)-induced: lipid peroxidation and superoxide anion generation in the rat hippocampus, in vivo. The study also shows, using cresyl violet staining, the preservation of structural integrity of neuronal cells following treatment with acetylsalicylic acid and acetaminophen in QA-lesioned rat hippocampus. Furthermore the study sought to determine whether these agents have any effect on endogenous (QA) formation. This study shows that acetylsalicylic acid and acetaminophen inhibit QA-induced superoxide anion generation, lipid peroxidation and cell damage, in vivo, in the rat hippocampus. In addition these agents inhibit the enzyme, 3-hydroxyanthranilic acid oxygenase (3-HAO), responsible for the synthesis of endogenous QA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aubin N, Curet O, Deffois A, Carter C (1998) Aspirin and salicylate protect against MPTP-induced dopamine depletion in mice. J Neurochem 71:1635–1642

    Article  PubMed  CAS  Google Scholar 

  • Bautista AP, Spitzer JJ (1990) Superoxide anion generation by in situ perfused rat liver: effect of invivo endotoxin. Am J Physiol 259:G907–G912

    PubMed  CAS  Google Scholar 

  • Bisaglia M, Venezia V, Piccioli P, Stanzione S, Porcile C, Russo C, Mancini F, Milanese C, Schettini G (2002) Acetaminophen protects hippocampal neurons and PC12 cultures from amyloid beta-peptides induced oxidative stress and reduces NF-kappaB activation. Neurochem Int 41:43–54

    Article  PubMed  CAS  Google Scholar 

  • Bonilla E, Tanji K, Hirano M, Vu TH, DiiMauro S, Schon EA (1999) Mitochondrial involvement in Alzheimer's disease. Biochim Biophys Acta 1410:171–182

    Article  PubMed  CAS  Google Scholar 

  • Das UN, Padma M, Sagar PS, Ramesh G, Koratkar R (1990) Stimulation of free radical generation in human leukocytes by various agents including tumor necrosis factor is a calmodulin-dependent process. Biochem Biophys Res Commun 167:1030–1036

    Article  PubMed  CAS  Google Scholar 

  • Daya S, Walker RB, Anoopkumar-Dukie S (2000) Cyanide-induced free radical production and lipid peroxidation in rat brain homogenate is reduced by aspirin. Met Brain Dis 15:203–209

    Article  CAS  Google Scholar 

  • Dragomir E, Manduteanu I, Voinea M, Costache G, Manea A, Simionescu M (2004) Aspirin rectifies calcium homeostasis, decreases reactive oxygen species, and increases NO production in high glucose-exposed human endothelial cells. J Diabetes Complications 18(5):289–299

    Article  PubMed  Google Scholar 

  • Gilad E, Cuzzocrea S, Zingarelli B, Salzman AL, Szabo C (1997) Melatonin is a scavenger of peroxynitrite. Life Sci 60:169–174

    Article  Google Scholar 

  • Glowinski J, Iversen LL (1966) Regional studies of catecholamines in the rat brain. I. The disposition of [3H]norepinephrine, [3H]dopamine and [3H]dopa in various regions of the brain. J Neurochem 13:655–669

    Article  PubMed  CAS  Google Scholar 

  • Grilli M, Pizzi M, Menio M, Spano F (1996) Neuroprotection by aspirin and sodium salicylate through blockade of NF-kappaB activation. Science 274:1383–1385

    Article  PubMed  CAS  Google Scholar 

  • Heyes MP (1996) The kynurenine pathway and neurological disease. Adv Exp Med Biol 398:125–129

    PubMed  CAS  Google Scholar 

  • Iravani MM, Kashefi K, Mander P, Rose S, Jenner P (2002) Involvement of inducible nitric oxide synthase in inflammation-induced dopaminergic neurodegeneration. Neuroscience 110:49–58

    Article  PubMed  CAS  Google Scholar 

  • König JFR, Klippel RA (1963) The Rat Brain. Williams and Wilkins, Baltimore MD, 108–114

    Google Scholar 

  • Kotrly S, Sucha L (1985) Handbook of Chemical Equilibria in Analytical Chemistry, Ellis Horwood Limited, Chichester, UK, p 163

    Google Scholar 

  • Lapin IP, Mirzaev SM, Rysov IV, Oxenkrug GF (1998) Anticonvulsant activity of melatonin against seizures induced by quinolate, kainite, glutamate, NMDA, and pentylenetetrazole in mice. J Pineal Res 24:215–218

    PubMed  CAS  Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–267

    PubMed  CAS  Google Scholar 

  • Maharaj DS, Saravanan KS, Maharaj H, Mohanakumar KP, Daya S (2004) Acetaminophen and aspirin inhibit superoxide anion generation and lipid peroxidation, and protect against 1-methyl-4-phenyl pyridinium-induced dopaminergic neurotoxicity in rats. Neurochem Int 44:355–360

    Article  PubMed  CAS  Google Scholar 

  • Mehler AH (1956) Formation of picolinic and quinolinic acids following enzymatic oxidation of 3-hydroxyanthranilic acid. J Biol Chem 218:241–54

    PubMed  CAS  Google Scholar 

  • Palkovits M, Brownstein MJ (1983) Microdissection of brain areas by punch technique. In: Cuello AC (Ed.), Brain Microdissection Techniques. Wiley, New York, pp 1–36

    Google Scholar 

  • Paxinos G, and Watson C (1998) The Rat Brain in Sterotaxic Coordinates. Academic Press, New York, pp 41–41

    Google Scholar 

  • Reiter RJ (1995) Oxidative processes and antioxidant defense mechanisms in the ageing brain. J FASEB 9:526–533

    CAS  Google Scholar 

  • Reiter RJ, Melchiori D, Poeggeler B, Barlow_Walden L, Chuang J, Oritz GG, Acuna-Castrviejo D (1995) A review of the evidence supporting melatonin's role as an antioxidant. J Pineal Res 18:1–11

    PubMed  CAS  Google Scholar 

  • Rios C, Santamaria A (1991) Quinolinic acid is a potent lipid peroxidant in rat brain homogenates. Neurochem Res 16:1139–1143

    Article  PubMed  CAS  Google Scholar 

  • Sagar PS, Das UN, Koratkar R, Ramesh G, Padma M, Kumar GS (1992) Cytotoxic action of cis-unsaturated fatty acids on human cervical carcinoma (HeLa) cells: relationship to free radicals and lipid peroxidation and its modulation by calmodulin antagonists. Cancer Lett 63:189–198

    Article  PubMed  CAS  Google Scholar 

  • Schwarcz R (2004) The kynurenine pathway of tryptophan degradation as a drug target. Curr Opin Pharmacol 4:12–7

    Article  PubMed  CAS  Google Scholar 

  • Schwarcz R, Koler C (1983) Differential vulnerability of central neurons of the rat to quinolinic acid. Neurosci Lett 38:85–90

    Article  PubMed  CAS  Google Scholar 

  • Southgate G, Daya S (1999) Melatonin reduces quinolinic acid-induced lipid peroxidation in rat brain homogenate. Metab Brain Dis 14:165–71

    Article  PubMed  CAS  Google Scholar 

  • Stipek S, Stastny F, Platenik J, Crkovska J, Zima T (1997) The effect of quinolinate on rat brain lipid peroxidation is dependent on iron. Neurochem Int 30:233–237

    Article  PubMed  CAS  Google Scholar 

  • Stone TW (1993) Neuropharmacology of quinolinic and kynurenic acids. Pharmacol Rev 45:309

    PubMed  CAS  Google Scholar 

  • Stone TW (2000) Development and therapeutic potential of kynurenic acid and kynurenine derivatives for neuroprotection. TIPS 21:149–54

    PubMed  CAS  Google Scholar 

  • Stone TW, Perkins MN (1981) Quinolinic acid: A potent endogenous excitant at amino acid receptors in CNS. European J Pharmacol 72:411–412

    Article  CAS  Google Scholar 

  • Teismann P, Ferger B (2001) Inhibition of the cyclooxygenase isoenzymes COX-1 and COX-2 provide neuroprotection in the MPTP-mouse model of Parkinson's disease. Synapse 39:167–174

    Article  PubMed  CAS  Google Scholar 

  • Zar JH (1974) Biostatistical Analysis, 1st edn. Prentice Hall, Englewood Cliffs, NJ, pp 151–466

    Google Scholar 

Download references

Acknowledgements

This study was made possible by a grant from the South African National Research Foundation to Prof. S. Daya. HM and DSM thanks the Medical Research Council (South Africa) for their Post Doctoral scholarships. The authors would like to thank Dave and Sally Morley for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Daya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maharaj, H., Maharaj, D.S. & Daya, S. Acetylsalicylic acid and acetaminophen protect against oxidative neurotoxicity. Metab Brain Dis 21, 180–190 (2006). https://doi.org/10.1007/s11011-006-9012-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-006-9012-7

Keywords

Navigation