Skip to main content

Advertisement

Log in

Synaptic Plasma Membrane Na+, K+-ATPase Activity is Significantly Reduced by the α-Keto Acids Accumulating in Maple Syrup Urine Disease in Rat Cerebral Cortex

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

The objective of the present study was to investigate the in vitro effects of the branched-chain α-keto acids accumulating in maple syrup urine disease, namely L-2-ketoisocaproic acid, L-2-keto-3-methylvaleric acid and L-2-ketoisovaleric acid on Na+, K+-ATPase activity in synaptic plasma membranes from cerebral cortex of 35-day-old rats. All keto acids significantly inhibited Na+, K+-ATPase activity at concentrations similar (1 mM) or even lower (0.5 mM) than those found in blood and cerebrospinal fluid of maple syrup urine disease patients. We also tested the effects of alanine on this enzyme activity. Alanine per se did not alter Na+, K+-ATPase activity, but totally prevented the branched-chain α-keto acids-induced Na+, K+-ATPase inhibition, indicating that alanine and the keto acids may possibly bind to the same site on the enzyme. We also observed that the branched-chain amino acids leucine, isoleucine and valine also inhibited Na+ K+-ATPase activity to a similar degree as that of the branched-chain α-keto acids and that alanine was able to fully prevent these effects. Considering that Na+, K+-ATPase is a critical enzyme for normal brain development and functioning, it is presumed that these findings may be involved in the pathophysiology of the neurological dysfunction of maple syrup urine disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Araujo P, Wassermann GF, Tallini K, Furlanetto V, Vargas CR, Wannmacher CM, Dutra-Filho CS, Wyse AT, Wajner M (2001) Reduction of large neutral amino acid levels in plasma and brain of hyperleucinemic rats. Neurochem Int 38:529–537

    Article  PubMed  CAS  Google Scholar 

  • Bavaresco CS, Zugno AI, Tagliari B, Wannmacher CMD, Wajner M, Wyse ATS (2004) Inhibition of Na+, K+-ATPase activity in rat striatum by the metabolites accumulated in Lesch-Nyhan disease. Int J Devel Neurosci 22:11–17

    Article  CAS  Google Scholar 

  • Ben-Ari Y (1985) Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neuroscience 14:375–403

    Article  CAS  Google Scholar 

  • Bridi R, Araldi J, Sgarbi MB, Testa CG, Durigon K, Wajner M, Dutra-Filho CS (2003) Induction of oxidative stress in rat brain by the metabolites accumulating in maple syrup urine disease. Int J Dev Neurosci 21:327–332

    Article  PubMed  CAS  Google Scholar 

  • Bridi R, Braun CA, Zorzi GK, Wannmacher CM, Wajner M, Lissi EG, Dutra-Filho CS (2005) Alpha-keto acids accumulating in maple syrup urine disease stimulate lipid peroxidation and reduce antioxidant defenses in cerebral cortex from young rats. Metab Brain Dis 20:155–167

    Article  PubMed  CAS  Google Scholar 

  • Bridi R, Latini A, Braum CA, Zorzi GK, Wajner M, Lissi E, Dutra-Filho CS (2005a) Evaluation of the mechanisms involved in leucine-induced oxidative damage in cerebral cortex of young rats. Free Radic Res 39:71–79

    PubMed  CAS  Google Scholar 

  • Chan KM, Delfert D, Junger KD (1986) A direct colorimetric assay for Ca2+-stimulated ATPase activity. Anal Biochem 157:375–380

    Article  PubMed  CAS  Google Scholar 

  • Choi DW, Rothman SM (1990) The role of glutamate neurotoxicity in hypoxicischemic neuronal death. Ann Rev Neurosci 13:171–182

    Article  PubMed  CAS  Google Scholar 

  • Chuang DT, Shih VE (2001) Maple syrup urine disease (branched-chain ketoaciduria). In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 8th edn. Ma Graw-Hill, New York, pp 1971–2005

    Google Scholar 

  • Coitinho AS, de Mello CF, Lima TT, de Bastiani J, Fighera MR, Wajner M (2001) Pharmacological evidence that alpha-ketoisovaleric acid induces convulsions through GABAergic and glutamatergic mechanisms in rats. Brain Res 894:68–73

    Article  PubMed  CAS  Google Scholar 

  • Cousin MA, Nicholls DG, Pocock JM (1995) Modulation of ion gradients and glutamate release in cultured cerebellar granule cells by ouabain. J Neurochem 64:2097–2104

    Article  PubMed  CAS  Google Scholar 

  • de Castro Vasques V, Boer MA, Diligenti F, Brinco F, Mallman F, Mello CF, Wajner M (2004) Intrahippocampal administration of the α-keto acids accumulating in maple syrup urine disease provokes learning deficits in rats. Pharmacol Biochem Behav 77:183–190

    Article  PubMed  CAS  Google Scholar 

  • Dodd PR, Williams SH, Gundlach AL, Harper PA, Healy PJ, Dennis JA, Johnston GA (1992) Glutamate and gama-aminobutyric acid neurotransmitter systems in the acute phase of maple syrup urine disease and citrullinemia encephalopathies in newborn calves. J Neurochem 59:582–590

    Article  PubMed  CAS  Google Scholar 

  • Erecinska M, Silver IA (1994) Ions and energy in mammalian brain. Prog Neurobiol 43:37–71

    Article  PubMed  CAS  Google Scholar 

  • Fontella FU, Gassen E, Pulronik V, Wannmacher CM, Klein AB, Wajner M, Dutra-Filho CS (2002) Stimulation of lipid peroxidation in vitro in rat brain by the metabolites accumulating in maple syrup urine disease. Metab Brain Dis 17:47–54

    Article  PubMed  CAS  Google Scholar 

  • Fontella FU, Pulrolnik V, Gassen E, Wannmacher CM, Klein AB, Wajner M, Dutra-Filho CS (2000) Propionic and L-methylmalonic acids induce oxidative stress in brain of young rats. Neuroreport 11:541–544

    Article  PubMed  CAS  Google Scholar 

  • Geering K (1990) Subunit assembly and functional maturation of Na+, K(+)-ATPase. J Membrane Biol 115:109–121

    Article  CAS  Google Scholar 

  • Grisar T (1984) Glial and neuronal Na+, K+-ATPase pump in epilepsy. Ann Neurol 16:128–134

    Article  Google Scholar 

  • Halestrap AP, Brand MD, Denton RM (1974) Inhibition of mitochondrial piruvate transport by phenylpyruvate and α-ketoisocaproate. Biochim Biophys Acta 367:102–108

    Article  PubMed  CAS  Google Scholar 

  • Henver RF, Duff RS, Wong-Ryley MTT (1992) Coordination of ATP production and consumption in brain: parallel regulation of cytochrome oxidase and Na+, K+-ATPase. Neurosci Lett 138:188–192

    Article  Google Scholar 

  • Hilliges C, Awiszus D, Wendel U (1993) Intellectual performance of children with maple syrup urine disease. Eur J Pediatr 152:144–147

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann GF, Meier-Augenstein W, Stockler S, Surtees R, Rating D, Nyhan WL (1993) Physiology and pathophysiology of organic acids in cerebrospinal fluid. J Inherit Metab Dis 16:648–669

    Article  PubMed  CAS  Google Scholar 

  • Howell RK, Lee M (1963) Influence of α-keto acids on the respiration of brain in vitro. Proc Soc Exp Biol Med 113:660–663

    PubMed  CAS  Google Scholar 

  • Jones DH, Matus AI (1974) Isolation of synaptic plasma membrane from brain by combined flotation-sedimentation density gradient centrifugation. Biochim Biophys Acta 356:276–287

    Article  PubMed  CAS  Google Scholar 

  • Jouvet P, Rustin P, Taylor DL, Pocock JM, Felderhoff-Mueser U, Mazarakis ND, Sarraf C, Joashi U, Kozma M, Greenwood K, Edwards AD, Mehmet H (2000) Branched chain amino acids induce apoptosis in neural cells without mitochondrial membrane depolarization or cytochrome c release: implications for neurological impairment associated with maple syrup urine disease. Mol Biol Cell 1:1919–1932

    Google Scholar 

  • Kolker S, Okun JG, Ahlemeyer B, Wyse AT, Horster F, Wajner M, Kohlmuller D, Mayatepek E, Kriglstein J, Hoffmann GF (2002) Chronic treatment with glutaric acid induces partial tolerance to excitotoxicity in neuronal cultures from chick embryo telencephalons. J Neurosci Res 68:424–431

    Article  PubMed  CAS  Google Scholar 

  • Kurella E, Kukley M, Tyulina O, Dobrota D, Matejovicova M, Mezesova V, Boldyrev A (1997) Kinetic parameters of Na/K-ATPase modified by free radicals in vitro and in vivo. Ann NY Acad Sci 834:661–665

    Article  PubMed  CAS  Google Scholar 

  • Land JM, Mowbray J, Clark JB (1976) Control of pyruvate and β-hydroxybutyrate utilization in rat brain mitochondria and its relevance to phenylketonuria and maple syrup urine disease. J Neurochem 26:823–830

    Article  PubMed  CAS  Google Scholar 

  • Lees GJ (1993) Contributory mechanisms in the causation of neurodegenerative disorders. Neuroscience 54:287–322

    Article  PubMed  CAS  Google Scholar 

  • Lees GJ (1991) Inhibition of sodium-potassium-ATPase: a potential ubiquitous mechanism contributing to central nevous system neuropathology. Brain Res Rev 16:283–300

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Naughten ER, Jenkings J, Francis DE, Leonard JV (1982) Outcome of maple syrup utine disease. Arch Dis Child 57:918–921

    Article  PubMed  CAS  Google Scholar 

  • Oldendorf WH (1973) Carrier-mediated blood-brain barrier transport of short-chain monocarboxylic organic acids. Am J Physiol 224:1450–1453

    PubMed  CAS  Google Scholar 

  • Pilla C, Cardozo RF, Dutra-Filho CS, Wyse AT, Wajner M, Wannmacher CM (2003) Creatine kinase activity from rat brain is inhibited by branched-chain amino acids in vitro. Neurochem Res 28:675–679

    Article  PubMed  CAS  Google Scholar 

  • Pilla C, Cardozo RF, Dutra-Filho CS, Wyse AT, Wajner M, Wannmacher CM (2003) Effect of leucine administration on creatine kinase activity in rat brain. Metab Brain Dis 18:17–25

    Article  PubMed  CAS  Google Scholar 

  • Prensky AL, Moser HW (1967) Changes in the amino acid composition of proteolipids of white matter during maturation of the human nervous system. J Neurochem 14:117–121

    Article  PubMed  CAS  Google Scholar 

  • Renkawek K, Renier WO, De Pont JJ, Vogels OJ, Gabreels FJ (1992) Neonatal status convulsivus, spongiform encephalopathy, and low activity of Na+/K(+)-ATPase in the brain. Epilepsy 33:58–64

    Article  CAS  Google Scholar 

  • Rousson R, Guibaud P (1984) Long term outcome of organic acidurias: survey of 105 French cases (1967–1983). J Inherit Metab Dis 7(Suppl 1):10–12

    Article  PubMed  Google Scholar 

  • Satoh E, Nakasato Y (1992) On the mechanism of ouabain-induced released of acetylcholine from synaptosomes. J Neurochem 58:1038–1044

    Article  PubMed  CAS  Google Scholar 

  • Schonberger S, Schweiger B, Schwahn B, Schwarz M, Wendel U (2004) Dysmyelination in the brain of adolescents and young adults with maple syrup urine disease. Mol Genet Metab 82:69–75

    Article  PubMed  CAS  Google Scholar 

  • Sgaravatti AM, Rosa RB, Schuck PF, Ribeiro CA, Wannmacher CM, Wyse AT, Dutra-Filho CS, Wajner M (2003) Inhibition of brain energy metabolism by the alpha-keto acids accumulating in maple syrup urine disease. Biochim Biophys Acta 1639:232–238

    PubMed  CAS  Google Scholar 

  • Snyderman SE, Goldstein F, Sansaricq C, Norton PM (1984) The relationship between the branched chain amino acids and their α-ketoacids in maple syrup urine disease. Pediatr Res 18:851–853

    PubMed  CAS  Google Scholar 

  • Snyderman SE, Morton PM, Roitman E, Holt LE Jr (1964) Maple syrup urine disease with a particular reference to diet therapy. Pediatrics 34:454–472

    PubMed  CAS  Google Scholar 

  • Steele RD (1986) Blood-brain barrier transport of the alpha-keto acid analogs of amino acids. Fed Proc 45:2060–2064

    PubMed  CAS  Google Scholar 

  • Streck EL, Zugno AI, Tagliari B, Wannmacher CMD, Wajner M, Wyse ATS (2002) Inhibition of Na+-K+-ATPase activity by the metabolites accumulating in homocystinuria. Metab Brain Dis 17:83–91

    Article  PubMed  CAS  Google Scholar 

  • Tavares RG, Santos CE, Tasca CI, Wajner M, Souza DO, Dutra-Filho CS (2001) Inhibition of glutamate uptake into synaptic vesicles from rat brain by 3-nitropropionic acid in vitro. Exp Neurol 172:250–254

    Article  PubMed  CAS  Google Scholar 

  • Tsakiris S, Deliconstantinos G (1984) Influence of phosphatidylserine on (Na+ K+)-stimulated ATPase and acethylcholinesterase activities of dog brain synaptosomal plasma membranes. Biochem J 22:301–307

    Google Scholar 

  • Wang XQ, Xiao AY, Sheline C, Hyrc K, Yang A, Goldberg MP, Choi DW, Yu SP (2003) Apoptotic insults impair Na+, K+-ATPase activity as a mechanism of neuronal death mediated by concurrent ATP deficiency and oxidant stress. J Cell Sci 116:2099–2110

    Article  PubMed  CAS  Google Scholar 

  • Wyse AT, Brusque AM, Silva CG, Streck EL, Wajner M, Wannmacher CM (1998) Inhibition of Na+, K+-ATPase from rat brain cortex by propionic acid. Neuroreport 9:1719–1721

    Article  PubMed  CAS  Google Scholar 

  • Wyse AT, Noriler ME, Borges LF, Floriano PJ, Silva CG, Wajner M, Wannmacher CM (1999) Alanine prevents the decrease of Na+, K+ -ATPase activity in experimental phenylketonuria. Metab Brain Dis 14:95–101

    Article  PubMed  CAS  Google Scholar 

  • Wyse AT, Wajner M, Brusque A, Wannmacher CM (1995) Alanine reverses the inhibitory effect of phenylalanine and its metabolites on Na+, K(+)-ATPase in synaptic plasma membranes from cerebral cortex of rats. Biochem Soc Trans 23:227S

    PubMed  CAS  Google Scholar 

  • Wyse ATS, Streck EL, Worm P, Wajner A, Ritter F, Netto CA (2000) Preconditioning prevents the inhibition of Na+, K+-ATPase activity after brain ischemia. Neurochem Res 25:969–973

    Article  Google Scholar 

  • Wyse ATS, Wajner M, Wannmacher CMD (1998) Kinects of alanine reversal on the inhibition of Na+, K+-ATPase activity by phenylalanine and phenillactate in the synaptic plasma membrane from the cerebral cortex of rats. Med Sci Res 26:141–143

    CAS  Google Scholar 

  • Xiao AY, Wei L, Xia S, Rothman S, Yu SP (2002) Ionic mechanism of ouabain-induced concurrent apoptosis and necrosis in individual cultured cortical neurons. J Neurosci 22:1350–1362

    PubMed  CAS  Google Scholar 

  • Yang YB, Piao YJ (2003) Effects of resveratrol on secondary damages after acute spinal cord injury in rats. Acta Pharmacol 24:703–710

    CAS  Google Scholar 

  • Yousef MI, El-Hendy HA, El-Demerdash FM, Elagamy EI (2002) Dietary zinc deficiency induced-changes in the activity of enzymes and the levels of free radicals, lipids and protein electrophoretic behavior in growing rats. Toxicology 175:223–234

    Article  PubMed  CAS  Google Scholar 

  • Yu SP (2003) Na+, K+-ATPase: the new face of an old player in pathogenesis and apoptotic/hybrid cell death Biochem. Pharmacol 66:1601–1609

    CAS  Google Scholar 

  • Yudkoff M, Daikhim Y, Lin ZP, Nissim I, Sterm J, Pleasure D (1994) Interrelationships of leucine and glutamate metabolism in cultures astrocytes. J Neurochem 62:1191–1192

    Google Scholar 

  • Zielke HR, Zielke CL, Baab PJ, Collins RM (2002) Large neutral amino acids auto exchange when infused by microdialysis into the rat brain: implications for maple syrup urine disease and phenylketonuria. Neurochem Int 40:347–354

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from Conselho Nacional de Desenvolvimento Científico e tecnológico (CNPq-Brazil), Fundação de Amparo à Pesquisa do Rio Grande do Sul (FAPERGS, RS-Brazil) and Programa de Núcleos de Excelência-Financiadora de Estudos e Projetos (PRONEX II, FINEP-CNPq-Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clóvis Milton Duval Wannmacher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wajner, A., Bürger, C., Dutra-Filho, C.S. et al. Synaptic Plasma Membrane Na+, K+-ATPase Activity is Significantly Reduced by the α-Keto Acids Accumulating in Maple Syrup Urine Disease in Rat Cerebral Cortex. Metab Brain Dis 22, 77–88 (2007). https://doi.org/10.1007/s11011-007-9046-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-007-9046-5

Keywords

Navigation