Skip to main content

Advertisement

Log in

Thyroid hormone’s role in regulating brain glucose metabolism and potentially modulating hippocampal cognitive processes

  • Review Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Cognitive performance is dependent on adequate glucose supply to the brain. Insulin, which regulates systemic glucose metabolism, has been recently shown both to regulate hippocampal metabolism and to be a mandatory component of hippocampally-mediated cognitive performance. Thyroid hormones (TH) regulate systemic glucose metabolism and may also be involved in regulation of brain glucose metabolism. Here we review potential mechanisms for such regulation. Importantly, TH imbalance is often encountered in combination with metabolic disorders such as diabetes, and may cause additional metabolic dysregulation and hence worsening of disease states. TH’s potential as a regulator of brain glucose metabolism is heightened by interactions with insulin signaling, but there have been relatively few studies on this topic or on the actions of TH in a mature brain. This review discusses evidence for mechanistic links between TH, insulin, cognitive function, and brain glucose metabolism, and reaches the conclusion that TH may modulate memory processes, likely at least in part by modulation of central insulin signaling and glucose metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Alzoubi KH, Alkadhi KA (2007) A critical role of CREB in the impairment of late-phase LTP by adult onset hypothyroidism. Exp Neurol 203(1):63–71

    PubMed  CAS  Google Scholar 

  • Alzoubi KH et al (2007) Adult-onset hypothyroidism facilitates and enhances LTD: reversal by chronic nicotine treatment. Neurobiol Dis 26(1):264–272

    PubMed  CAS  Google Scholar 

  • Alzoubi KH et al (2009) Levothyroxin restores hypothyroidism-induced impairment of hippocampus-dependent learning and memory: Behavioral, electrophysiological, and molecular studies. Hippocampus 19(1):66–78

    PubMed  CAS  Google Scholar 

  • Babri A et al (2007) Intrahippocampal insulin improves memory in a passive-avoidance task in male wistar rats. Brain Cognit 64:86–91

    Google Scholar 

  • Bauer M et al (2009) Brain glucose metabolism in hypothyroidism: a positron emission tomography study before and after thyroid hormone replacement therapy. J Clin Endocrinol Metab 94(8):2922–2929

    PubMed  CAS  Google Scholar 

  • Benedict C et al (2004) Intranasal insulin improves memory in humans. Psychoneuroendocrinology 29(10):1326–1334

    PubMed  CAS  Google Scholar 

  • Benedict C et al (2007) Intranasal insulin improves memory in humans: superiority of insulin aspart. Neuropsychopharmacology 32(1):239–243

    PubMed  CAS  Google Scholar 

  • Bergh JJ et al (2005) Integrin alphaVbeta3 contains a cell surface receptor site for thyroid hormone that is linked to activation of mitogen-activated protein kinase and induction of angiogenesis. Endocrinology 146(7):2864–2871

    PubMed  CAS  Google Scholar 

  • Bianco AC et al (2002) Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev 23(1):38–89

    PubMed  CAS  Google Scholar 

  • Biessels GJ et al (2008) Cognition and diabetes: a lifespan perspective. Lancet Neurol 7(2):184–190

    PubMed  Google Scholar 

  • Biondi B (2010) Thyroid and obesity: an intriguing relationship. J Clin Endocrinol Metab 95(8):3614–3617

    PubMed  CAS  Google Scholar 

  • Brabant A et al (1989) The role of glucocorticoids in the regulation of thyrotropin. Acta Endocrinol (Copenh) 121(1):95–100

    CAS  Google Scholar 

  • Bradley DJ et al (1989) Differential expression of alpha and beta thyroid hormone receptor genes in rat brain and pituitary. Proc Natl Acad Sci U S A 86(18):7250–7254

    PubMed  CAS  Google Scholar 

  • Brands AM et al (2007) Cognitive functioning and brain MRI in patients with type 1 and type 2 diabetes mellitus: a comparative study. Dement Geriatr Cogn Disord 23(5):343–350

    PubMed  Google Scholar 

  • Canal C et al (2005) Glucose injections into the dorsal hippocampus or dorsolateral striatum of rats prior to T-maze training: modulation of learning rats and strategy selection. Learn Mem 12:367–374

    PubMed  Google Scholar 

  • Canani LH et al (2005) The type 2 deiodinase A/G (Thr92Ala) polymorphism is associated with decreased enzyme velocity and increased insulin resistance in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 90(6):3472–3478

    PubMed  CAS  Google Scholar 

  • Cano-Europa E et al (2008) Hypothyroidism induces selective oxidative stress in amygdala and hippocampus of rat. Metab Brain Dis 23(3):275–287

    PubMed  CAS  Google Scholar 

  • Cao X et al (2009) Thyroid-hormone-dependent activation of the phosphoinositide 3-kinase/Akt cascade requires Src and enhances neuronal survival. Biochem J 424(2):201–209

    PubMed  CAS  Google Scholar 

  • Carageorgiou H et al (2007) Changes in acetylcholinesterase, Na+, K+-ATPase, and Mg2+-ATPase activities in the frontal cortex and the hippocampus of hyper- and hypothyroid adult rats. Metabolism 56(8):1104–1110

    PubMed  CAS  Google Scholar 

  • Caria MA et al (2009) Thyroid hormone action: nongenomic modulation of neuronal excitability in the hippocampus. J Neuroendocrinol 21(2):98–107

    PubMed  CAS  Google Scholar 

  • Casla A et al (1990) Increased glucose transporter (GLUT4) protein expression in hyperthyroidism. Biochem Biophys Res Commun 171(1):182–188

    PubMed  CAS  Google Scholar 

  • Celani MF et al (1994) Prevalence of abnormal thyrotropin concentrations measured by a sensitive assay in patients with type 2 diabetes mellitus. Diabetes Res 27(1):15–25

    PubMed  CAS  Google Scholar 

  • Cheng SY et al (2010) Molecular aspects of thyroid hormone actions. Endocr Rev 31(2):139–170

    PubMed  CAS  Google Scholar 

  • Chiu SL, Cline HT (2010) Insulin receptor signaling in the development of neuronal structure and function. Neural Dev 5:7

    PubMed  Google Scholar 

  • Chrousos GP (1995) The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N Engl J Med 332(20):1351–1362

    PubMed  CAS  Google Scholar 

  • Chubb SA et al (2005a) Interactions among thyroid function, insulin sensitivity, and serum lipid concentrations: the Fremantle diabetes study. J Clin Endocrinol Metab 90(9):5317–5320

    PubMed  CAS  Google Scholar 

  • Chubb SA et al (2005b) Prevalence and progression of subclinical hypothyroidism in women with type 2 diabetes: the Fremantle Diabetes Study. Clin Endocrinol (Oxf) 62(4):480–486

    CAS  Google Scholar 

  • Constant EL et al (2001) Cerebral blood flow and glucose metabolism in hypothyroidism: a positron emission tomography study. J Clin Endocrinol Metab 86(8):3864–3870

    PubMed  CAS  Google Scholar 

  • Constantinou C et al (2005) Region-specific effects of hypothyroidism on the relative expression of thyroid hormone receptors in adult rat brain. Mol Cell Biochem 278(1–2):93–100

    PubMed  CAS  Google Scholar 

  • Couch RM (1992) Dissociation of cortisol and adrenal androgen secretion in poorly controlled insulin-dependent diabetes mellitus. Acta Endocrinol (Copenh) 127(2):115–117

    CAS  Google Scholar 

  • Craft S et al (2011) Intranasal Insulin Therapy for Alzheimer Disease and Amnestic Mild Cognitive Impairment: A Pilot Clinical Trial. Arch Neurol 69(1):29–38

    Google Scholar 

  • Custro N et al (1991) Changes in the thyroid hormone picture that may be found in severely decompensated type II diabetics. Minerva Med 82(1–2):9–14

    PubMed  CAS  Google Scholar 

  • D’Arezzo S et al (2004) Rapid nongenomic effects of 3,5,3′-triiodo-L-thyronine on the intracellular pH of L-6 myoblasts are mediated by intracellular calcium mobilization and kinase pathways. Endocrinology 145(12):5694–5703

    PubMed  Google Scholar 

  • Das K, Chainy GB (2004) Thyroid hormone influences antioxidant defense system in adult rat brain. Neurochem Res 29(9):1755–1766

    PubMed  CAS  Google Scholar 

  • Davis PJ, Davis FB (2002) Nongenomic actions of thyroid hormone on the heart. Thyroid 12(6):459–466

    PubMed  CAS  Google Scholar 

  • Davis PJ et al (2002) Comparison of the mechanisms of nongenomic actions of thyroid hormone and steroid hormones. J Endocrinol Invest 25(4):377–388

    PubMed  CAS  Google Scholar 

  • De Felice FG et al (2009) Protection of synapses against Alzheimer’s-linked toxins: insulin signaling prevents the pathogenic binding of Abeta oligomers. Proc Natl Acad Sci U S A 106(6):1971–1976

    PubMed  Google Scholar 

  • de Jong FJ et al (2006) Thyroid hormones, dementia, and atrophy of the medial temporal lobe. J Clin Endocrinol Metab 91(7):2569–2573

    PubMed  Google Scholar 

  • Degroot A et al (2003) Glucose increases hippocampal extracellular acetylcholine levels upon activation of septal GABA receptors. Brain Res 979(1–2):71–77

    PubMed  CAS  Google Scholar 

  • Desouza LA et al (2005) Thyroid hormone regulates hippocampal neurogenesis in the adult rat brain. Mol Cell Neurosci 29(3):414–426

    PubMed  CAS  Google Scholar 

  • Diez D et al (2008) Thyroid hormone action in the adult brain: gene expression profiling of the effects of single and multiple doses of triiodo-L-thyronine in the rat striatum. Endocrinology 149(8):3989–4000

    PubMed  CAS  Google Scholar 

  • Diez JJ et al (2011) Prevalence of thyroid dysfunction in patients with type 2 diabetes. Exp Clin Endocrinol Diabetes 119(4):201–207

    PubMed  CAS  Google Scholar 

  • Dimitriadis G et al (1985) Effect of thyroid hormone excess on action, secretion, and metabolism of insulin in humans. Am J Physiol 248(5 Pt 1):E593–E601

    PubMed  CAS  Google Scholar 

  • Dora JM et al (2010) Association of the type 2 deiodinase Thr92Ala polymorphism with type 2 diabetes: case-control study and meta-analysis. Eur J Endocrinol 163(3):427–434

    PubMed  CAS  Google Scholar 

  • dos Reis EA et al (2002) Arginine administration inhibits hippocampal Na(+), K(+)-ATPase activity and impairs retention of an inhibitory avoidance task in rats. Brain Res 951(2):151–157

    PubMed  Google Scholar 

  • Duick DS et al (1974) Effect of single dose dexamethasone on the concentration of serum triiodothyronine in man. J Clin Endocrinol Metab 39(6):1151–1154

    PubMed  CAS  Google Scholar 

  • Erickson EJ et al (2006) Septal co-infusions of glucose with a GABAB agonist impair memory. Neurobiol Learn Mem 85(1):66–70

    PubMed  CAS  Google Scholar 

  • Estivalet AA et al (2011) D2 Thr92Ala and PPARgamma2 Pro12Ala polymorphisms interact in the modulation of insulin resistance in type 2 diabetic patients. Obesity (Silver Spring) 19(4):825–832

    CAS  Google Scholar 

  • Fernandez-Lamo I et al (2009) Effects of thyroid hormone replacement on associative learning and hippocampal synaptic plasticity in adult hypothyroid rats. Eur J Neurosci 30(4):679–692

    PubMed  Google Scholar 

  • Fliers E et al (2010) Novel neural pathways for metabolic effects of thyroid hormone. Trends Endocrinol Metab 21(4):230–236

    PubMed  CAS  Google Scholar 

  • Freitas BC et al (2010) Paracrine signaling by glial cell-derived triiodothyronine activates neuronal gene expression in the rodent brain and human cells. J Clin Invest 120(6):2206–2217

    PubMed  CAS  Google Scholar 

  • Garvey WT et al (1989) Expression of a glucose transporter gene cloned from brain in cellular models of insulin resistance: dexamethasone decreases transporter mRNA in primary cultured adipocytes. Mol Endocrinol 3(7):1132–1141

    PubMed  CAS  Google Scholar 

  • Gavin LA et al (1981) The mechanism of impaired T3 production from T4 in diabetes. Diabetes 30(8):694–699

    PubMed  CAS  Google Scholar 

  • Ge R et al (2010) 11beta-hydroxysteroid dehydrogenase type 1 inhibitors as promising therapeutic drugs for diabetes: status and development. Curr Med Chem 17(5):412–422

    PubMed  CAS  Google Scholar 

  • Gereben B et al (2008a) Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr Rev 29(7):898–938

    PubMed  CAS  Google Scholar 

  • Gereben B et al (2008b) Activation and inactivation of thyroid hormone by deiodinases: local action with general consequences. Cell Mol Life Sci 65(4):570–590

    PubMed  CAS  Google Scholar 

  • Gerges NZ, Alkadhi KA (2004) Hypothyroidism impairs late LTP in CA1 region but not in dentate gyrus of the intact rat hippocampus: MAPK involvement. Hippocampus 14(1):40–45

    PubMed  CAS  Google Scholar 

  • Gerges NZ et al (2001) Combination of hypothyroidism and stress abolishes early LTP in the CA1 but not dentate gyrus of hippocampus of adult rats. Brain Res 922(2):250–260

    PubMed  CAS  Google Scholar 

  • Gerges NZ et al (2005) Role of phosphorylated CaMKII and calcineurin in the differential effect of hypothyroidism on LTP of CA1 and dentate gyrus. Hippocampus 15(4):480–490

    PubMed  CAS  Google Scholar 

  • Gerozissis K (2003) Brain insulin: regulation, mechanisms of action and functions. Cell Mol Neurobiol 23(1):1–25

    PubMed  Google Scholar 

  • Gerozissis K (2008) Brain insulin, energy and glucose homeostasis; genes, environment and metabolic pathologies. Eur J Pharmacol 585(1):38–49

    PubMed  CAS  Google Scholar 

  • Gerozissis K et al (2001) A potential role of central insulin in learning and memory related to feeding. Cell Mol Neurobiol 21(4):389–401

    PubMed  CAS  Google Scholar 

  • Ghajar JB et al (1985) Regional acetylcholine metabolism in brain during acute hypoglycemia and recovery. J Neurochem 44(1):94–98

    PubMed  CAS  Google Scholar 

  • Glass CK, Rosenfeld MG (2000) The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 14(2):121–141

    PubMed  CAS  Google Scholar 

  • Gold PE (1995) Role of glucose in regulating the brain and cognition. Am J Clin Nutr 61(4 Suppl):987S–995S

    PubMed  CAS  Google Scholar 

  • Gold P (2005) Glucose and age-related changes in memory. Neurobiol Aging 26(1):60–64

    PubMed  Google Scholar 

  • Gold SM et al (2007) Hippocampal damage and memory impairments as possible early brain complications of type 2 diabetes. Diabetologia 50(4):711–719

    PubMed  CAS  Google Scholar 

  • Gopinath B et al (2008) Type 2 diabetes does not predict incident thyroid dysfunction in the elderly. Diabetes Res Clin Pract 82(3):e11–e13

    PubMed  Google Scholar 

  • Gorell JM et al (1981) Regional CNS levels of acetylcholine and choline during hypoglycemic stupor and recovery. J Neurochem 36(1):321–324

    PubMed  CAS  Google Scholar 

  • Gould E et al (1991) The hippocampal formation: morphological changes induced by thyroid, gonadal and adrenal hormones. Psychoneuroendocrinology 16(1–3):67–84

    PubMed  CAS  Google Scholar 

  • Grillo CA et al (2009) Insulin-stimulated translocation of GLUT4 to the plasma membrane in rat hippocampus is PI3-kinase dependent. Brain Res 1296:35–45

    PubMed  CAS  Google Scholar 

  • Grozovsky R et al (2009) Type 2 deiodinase expression is induced by peroxisomal proliferator-activated receptor-gamma agonists in skeletal myocytes. Endocrinology 150(4):1976–1983

    PubMed  CAS  Google Scholar 

  • Guadano-Ferraz A et al (1999) Expression of type 2 iodothyronine deiodinase in hypothyroid rat brain indicates an important role of thyroid hormone in the development of specific primary sensory systems. J Neurosci 19(9):3430–3439

    PubMed  CAS  Google Scholar 

  • Guadano-Ferraz A et al (2003) Lack of thyroid hormone receptor alpha1 is associated with selective alterations in behavior and hippocampal circuits. Mol Psychiatry 8(1):30–38

    PubMed  CAS  Google Scholar 

  • Hall J et al (1989) Glucose enhancement of performance on memory tests in young and aged humand. Neuropsychologia 27:1129–1138

    PubMed  CAS  Google Scholar 

  • Handisurya A et al (2008) Effects of T4 replacement therapy on glucose metabolism in subjects with subclinical (SH) and overt hypothyroidism (OH). Clin Endocrinol (Oxf) 69(6):963–969

    CAS  Google Scholar 

  • Hassert DL et al (2004) The effects of peripheral vagal nerve stimulation at a memory-modulating intensity on norepinephrine output in the basolateral amygdala. Behav Neurosci 118(1):79–88

    PubMed  CAS  Google Scholar 

  • Hernandez A et al (2010) Type 3 deiodinase deficiency causes spatial and temporal alterations in brain T3 signaling that are dissociated from serum thyroid hormone levels. Endocrinology 151(11):5550–5558

    PubMed  CAS  Google Scholar 

  • Hogervorst E et al (2008) Thyroid function and cognitive decline in the MRC Cognitive Function and Ageing Study. Psychoneuroendocrinology 33(7):1013–1022

    PubMed  CAS  Google Scholar 

  • Holmes C et al (1983) A survey of cognitive functioning at different glucose levels in diabetic persons. Diabetes Care 6:180–185

    PubMed  CAS  Google Scholar 

  • Holmes C et al (1986) Simple versus complex impairments at three blood glucose levels. Psychoneuroendocrinology 11:353–357

    PubMed  CAS  Google Scholar 

  • Holness MJ et al (2008) PPARalpha activation and increased dietary lipid oppose thyroid hormone signaling and rescue impaired glucose-stimulated insulin secretion in hyperthyroidism. Am J Physiol Endocrinol Metab 295(6):E1380–E1389

    PubMed  CAS  Google Scholar 

  • Hoyland A et al (2008) Acute effects of macronutrient manipulations on cognitive test performance in healthy young adults: a systematic research review. Neurosci Biobehav Rev 32(1):72–85

    PubMed  CAS  Google Scholar 

  • Iglesias T et al (1995) Identification of the mitochondrial NADH dehydrogenase subunit 3 (ND3) as a thyroid hormone regulated gene by whole genome PCR analysis. Biochem Biophys Res Commun 210(3):995–1000

    PubMed  CAS  Google Scholar 

  • Ishay A et al (2009) Prevalence of subclinical hypothyroidism in women with type 2 diabetes. Med Sci Monit 15(4):CR151–CR155

    PubMed  CAS  Google Scholar 

  • Izumi Y et al (2003) Effects of insulin on LTP in hippocampal slices from diabetic rats. Diabetologia 46(7):1007–1012

    PubMed  CAS  Google Scholar 

  • Jolivalt CG et al (2010) Type 1 diabetes exaggerates features of Alzheimer’s disease in APP transgenic mice. Exp Neurol 223(2):422–431

    PubMed  CAS  Google Scholar 

  • Klieverik LP et al (2008) Effects of thyrotoxicosis and selective hepatic autonomic denervation on hepatic glucose metabolism in rats. Am J Physiol Endocrinol Metab 294(3):E513–E520

    PubMed  CAS  Google Scholar 

  • Klieverik LP et al (2009) Thyroid hormone modulates glucose production via a sympathetic pathway from the hypothalamic paraventricular nucleus to the liver. Proc Natl Acad Sci U S A 106(14):5966–5971

    PubMed  CAS  Google Scholar 

  • Korol DL, Gold PE (1998) Glucose, memory, and aging. Am J Clin Nutr 67(4):764S–771S

    PubMed  CAS  Google Scholar 

  • Krebs-Kraft DL, Parent MB (2008) Hippocampal infusions of glucose reverse memory deficits produced by co-infusions of a GABA receptor agonist. Neurobiol Learn Mem 89(2):142–152

    PubMed  CAS  Google Scholar 

  • Kuruvilla AK et al (1991) Regulation of glucose transport in Clone 9 cells by thyroid hormone. Biochim Biophys Acta 1094(3):300–308

    PubMed  CAS  Google Scholar 

  • Lazar MA (1993) Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr Rev 14(2):184–193

    PubMed  CAS  Google Scholar 

  • Lechan RM et al (1993) Immunocytochemical delineation of thyroid hormone receptor beta 2-like immunoreactivity in the rat central nervous system. Endocrinology 132(6):2461–2469

    PubMed  CAS  Google Scholar 

  • Lee MK et al (1988) Memory enhancement with posttraining intraventricular glucose injections in rats. Behav Neurosci 102(4):591–595

    PubMed  CAS  Google Scholar 

  • Levin L et al (2004) Analysis of HLA genes in families with autoimmune diabetes and thyroiditis. Hum Immunol 65(6):640–647

    PubMed  CAS  Google Scholar 

  • Li Q et al (2011) Common genetic variation in the 3′-untranslated region of gonadotropin-releasing hormone receptor regulates gene expression in cella and is associated with thyroid function, insulin secretion as well as insulin sensitivity in polycystic ovary syndrome patients. Hum Genet 129(5):553–561

    PubMed  CAS  Google Scholar 

  • Lin JW et al (2000) Distinct molecular mechanisms and divergent endocytotic pathways of AMPA receptor internalization. Nat Neurosci 3(12):1282–1290

    PubMed  CAS  Google Scholar 

  • Long J et al (1992) Complex maze performance in young and aged rats: response to glucose treatment and relationship to blood insulin and glucose. Physiol Behav 51:411–418

    PubMed  CAS  Google Scholar 

  • LoPresti JS et al (1989) Alterations in 3,3′5′-triiodothyronine metabolism in response to propylthiouracil, dexamethasone, and thyroxine administration in man. J Clin Invest 84(5):1650–1656

    PubMed  CAS  Google Scholar 

  • Man HY et al (2000) Regulation of AMPA receptor-mediated synaptic transmission by clathrin-dependent receptor internalization.[erratum appears in Neuron 2001 Jan;29(1):307]. Neuron 25(3):649–662

    PubMed  CAS  Google Scholar 

  • Manning CA et al (1998) Glucose enhancement of 24-h memory retrieval in healthy elderly humans. Behav Brain Res 93(1–2):71–76

    PubMed  CAS  Google Scholar 

  • Matthaei S et al (1995) Effect of in vivo thyroid hormone status on insulin signalling and GLUT1 and GLUT4 glucose transport systems in rat adipocytes. J Endocrinol 144(2):347–357

    PubMed  CAS  Google Scholar 

  • McEwen BS, Reagan LP (2004) Glucose transporter expression in the central nervous system: relationship to synaptic function. Eur J Pharmacol 490(1–3):13–24

    PubMed  CAS  Google Scholar 

  • McNay EC, Gold PE (2002) Food for thought: fluctuations in brain extracellular glucose provide insight into the mechanisms of memory modulation. Behav Cogn Neurosci Rev 1(4):264–280

    PubMed  Google Scholar 

  • McNay EC, Recknagel AK (2011) Brain insulin signaling: A key component of cognitive processes and a potential basis for cognitive impairment in type 2 diabetes. Neurobiol Learn Mem 96(3):432–442

    Google Scholar 

  • McNay EC et al (2000) Decreases in rat extracellular hippocampal glucose concentration associated with cognitive demand during a spatial task. Proc Natl Acad Sci U S A 97(6):2881–2885

    PubMed  CAS  Google Scholar 

  • McNay EC et al (2001) Fluctuations in brain glucose concentration during behavioral testing: dissociations between brain areas and between brain and blood. Neurobiol Learn Mem 75(3):325–337

    PubMed  CAS  Google Scholar 

  • McNay EC et al (2004) Acute intrahippocampal insulin enhances spatial cognition, vol 888. Society for Neuroscience Annual Meeting, San Diego, Abstract 888.22

  • McNay EC et al (2010) Hippocampal memory processes are modulated by insulin and high-fat-induced insulin resistance. Neurobiol Learn Mem 93(4):546–553

    PubMed  CAS  Google Scholar 

  • Mentuccia D et al (2002) Association between a novel variant of the human type 2 deiodinase gene Thr92Ala and insulin resistance: evidence of interaction with the Trp64Arg variant of the beta-3-adrenergic receptor. Diabetes 51(3):880–883

    PubMed  CAS  Google Scholar 

  • Messier C (2004) Glucose improvement of memory: a review. Eur J Pharmacol 490(1–3):33–57

    PubMed  CAS  Google Scholar 

  • Miao Q et al (2011) Reversible changes in brain glucose metabolism following thyroid function normalization in hyperthyroidism. AJNR Am J Neuroradiol 32(6):1034–1042

    PubMed  CAS  Google Scholar 

  • Mielke J et al (2005) A biochemical and functional characterization of diet-induced brain insulin resistance. J Neurochem 93:1568–1578

    PubMed  CAS  Google Scholar 

  • Mitsuhashi T et al (1988) Alternative splicing generates messages encoding rat c-erbA proteins that do not bind thyroid hormone. Proc Natl Acad Sci U S A 85(16):5804–5808

    PubMed  CAS  Google Scholar 

  • Moeller LC et al (2006) Thyroid hormone mediated changes in gene expression can be initiated by cytosolic action of the thyroid hormone receptor beta through the phosphatidylinositol 3-kinase pathway. Nucl Recept Signal 4:e020

    PubMed  Google Scholar 

  • Mooradian AD et al (1997) Thyroid hormone-induced GLUT-1 expression in rat cerebral tissue: effect of age. Brain Res 747(1):144–146

    PubMed  CAS  Google Scholar 

  • Moosavi M et al (2006) The effect of intrahippocampal insulin microinjection on spatial learning and memory. Horm Behav 50:748–752

    PubMed  CAS  Google Scholar 

  • Morrison CD et al (2010) High fat diet increases hippocampal oxidative stress and cognitive impairment in aged mice: implications for decreased Nrf2 signaling. J Neurochem 114(6):1581–1589

    PubMed  CAS  Google Scholar 

  • Morteza Taghavi S et al (2011) Metformin decreases thyrotropin in overweight women with polycystic ovarian syndrome and hypothyroidism. Diab Vasc Dis Res 8(1):47–48

    PubMed  CAS  Google Scholar 

  • Naeije R et al (1978) A low T3 syndrome in diabetic ketoacidosis. Clin Endocrinol (Oxf) 8(6):467–472

    CAS  Google Scholar 

  • O’Brien MD, Harris PW (1968) Cerebral-cortex perfusion-rates in myxoedema. Lancet 1(7553):1170–1172

    PubMed  Google Scholar 

  • Pantos C et al (2004) Thyroid hormone and phenotypes of cardioprotection. Basic Res Cardiol 99(2):101–120

    PubMed  CAS  Google Scholar 

  • Parsons MW, Gold PE (1992) Glucose enhancement of memory in elderly humans: an inverted-U dose-response curve. Neurobiol Aging 13(3):401–404

    PubMed  CAS  Google Scholar 

  • Patti ME et al (2003) Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci U S A 100(14):8466–8471

    PubMed  CAS  Google Scholar 

  • Pedersen O et al (1988) Characterization of the insulin resistance of glucose utilization in adipocytes from patients with hyper- and hypothyroidism. Acta Endocrinol (Copenh) 119(2):228–234

    CAS  Google Scholar 

  • Peeters RP et al (2003) Reduced activation and increased inactivation of thyroid hormone in tissues of critically ill patients. J Clin Endocrinol Metab 88(7):3202–3211

    PubMed  CAS  Google Scholar 

  • Pelligrino D et al (1990) Brain glucose utilization and transport and cortical function in chronic vs. acute hypoglycemia. Am J Physiol 259:E729–E735

    PubMed  CAS  Google Scholar 

  • Peter SA (1991) Remission of Graves’ disease with hyperthyroidism by a combination of glucocorticoids and antithyroid drugs. J Natl Med Assoc 83(3):261–264

    PubMed  CAS  Google Scholar 

  • Petersen KF et al (2004) Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350(7):664–671

    PubMed  CAS  Google Scholar 

  • Piroli GG et al (2007) Corticosterone impairs insulin-stimulated translocation of GLUT4 in the rat hippocampus. Neuroendocrinology 85(2):71–80

    PubMed  CAS  Google Scholar 

  • Prinz PN et al (1999) Thyroid hormones: positive relationships with cognition in healthy, euthyroid older men. J Gerontol A Biol Sci Med Sci 54(3):M111–M116

    PubMed  CAS  Google Scholar 

  • Puymirat J et al (1991) Immunocytochemical localization of thyroid hormone receptors in the adult rat brain. Thyroid 1(2):173–184

    PubMed  CAS  Google Scholar 

  • Pych J et al (2005) Acetylcholine release in hippocampus and striatum during testing on a rewarded spontaneous alternation task. Neurobiol Learn Mem 84:93–101

    PubMed  CAS  Google Scholar 

  • Radaideh AR et al (2004) Thyroid dysfunction in patients with type 2 diabetes mellitus in Jordan. Saudi Med J 25(8):1046–1050

    PubMed  Google Scholar 

  • Ragozzino ME et al (1998) Modulation of hippocampal acetylcholine release and spontaneous alternation scores by intrahippocampal glucose injections. J Neurosci 18(4):1595–1601

    PubMed  CAS  Google Scholar 

  • Rao J et al (2006) Regulation of cerebral glucose metabolism. Minerva Endocrinol 31(2):149–158

    PubMed  CAS  Google Scholar 

  • Rasgon N, Jarvik L (2004) Insulin resistance, affective disorders, and Alzheimer’s disease: review and hypothesis. J Gerontol A Biol Sci Med Sci 59(2):178–183, discussion 184-92

    PubMed  Google Scholar 

  • Re RN et al (1976) The effect of glucocorticoid administration on human pituitary secretion of thyrotropin and prolactin. J Clin Endocrinol Metab 43(2):338–346

    PubMed  CAS  Google Scholar 

  • Reagan LP (2005) Neuronal insulin signal transduction mechanisms in diabetes phenotypes. Neurobiol Aging 26(Suppl 1):56–59

    PubMed  Google Scholar 

  • Reagan LP (2011) Diabetes as a chronic metabolic stressor: Causes, consequences and clinical complications. Exp Neurol In Press, Corrected Proof.

  • Reed L, Pangaro LN (1995) Physiology of thyroid gland. 1: Synthesis and release, iodine metabolism, binding and transport. In: Becker KL (ed) Principles and practice of endocrinology and metabolism, J.B. Lippincott Co, Philadelphia, p 2161

    Google Scholar 

  • Reger M et al (2006) Effects of intranasal insulin on cognition in memory-impaired older adults: modulation by APOE genotype. Neurobiol Aging 27:451–458

    PubMed  CAS  Google Scholar 

  • Reger MA et al (2008) Intranasal insulin improves cognition and modulates beta-amyloid in early AD. Neurology 70(6):440–448

    PubMed  CAS  Google Scholar 

  • Revill P et al (2006) Impaired insulin signaling and the pathogenesis of Alzheimer’s disease. Drugs Today (Barc) 42(12):785–790

    CAS  Google Scholar 

  • Ross AP et al (2009) A high fructose diet impairs spatial memory in male rats. Neurobiol Learn Mem 92(3):410–416

    PubMed  CAS  Google Scholar 

  • Roubsanthisuk W et al (2006) Hyperthyroidism induces glucose intolerance by lowering both insulin secretion and peripheral insulin sensitivity. J Med Assoc Thai 89(Suppl 5):S133–S140

    PubMed  Google Scholar 

  • Saini JS et al (1993) Thyroid hormones in diabetic ketoacidosis before and after therapy. J Assoc Physicians India 41(7):415–417

    PubMed  CAS  Google Scholar 

  • Sala-Roca J et al (2008) Effects of adult dysthyroidism on the morphology of hippocampal neurons. Behav Brain Res 188(2):348–354

    PubMed  CAS  Google Scholar 

  • Samuels MH (2000) Effects of variations in physiological cortisol levels on thyrotropin secretion in subjects with adrenal insufficiency: a clinical research center study. J Clin Endocrinol Metab 85(4):1388–1393

    PubMed  CAS  Google Scholar 

  • Samuels MH (2008) Cognitive function in untreated hypothyroidism and hyperthyroidism. Curr Opin Endocrinol Diabetes Obes 15(5):429–433

    PubMed  Google Scholar 

  • Santalucia T et al (2001) A novel functional co-operation between MyoD, MEF2 and TRalpha1 is sufficient for the induction of GLUT4 gene transcription. J Mol Biol 314(2):195–204

    PubMed  CAS  Google Scholar 

  • Sato K, Robbins J (1981) Thyroid hormone metabolism in primary cultured rat hepatocytes. Effects of glucose, glucagon, and insulin. J Clin Invest 68(2):475–483

    PubMed  CAS  Google Scholar 

  • Scheinberg P et al (1950) Correlative observations on cerebral metabolism and cardiac output in myxedema. J Clin Invest 29(9):1139–1146

    PubMed  CAS  Google Scholar 

  • Shukla PK et al (2010) Prenatal thyroxine treatment disparately affects peripheral and amygdala thyroid hormone levels. Psychoneuroendocrinology 35(6):791–797

    PubMed  CAS  Google Scholar 

  • Simpson IA et al (1994) Glucose transporters in mammalian brain. Biochem Soc Trans 22(3):671–675

    PubMed  CAS  Google Scholar 

  • Sittig LJ et al (2011) Parent-of-origin allelic contributions to deiodinase-3 expression elicit localized hyperthyroid milieu in the hippocampus. Mol Psychiatry

  • Smith CD, Ain KB (1995) Brain metabolism in hypothyroidism studied with 31P magnetic-resonance spectroscopy. Lancet 345(8950):619–620

    PubMed  CAS  Google Scholar 

  • Smith JW et al (2002) Thyroid hormones, brain function and cognition: a brief review. Neurosci Biobehav Rev 26(1):45–60

    PubMed  CAS  Google Scholar 

  • St Germain DL et al (2009) Minireview: defining the roles of the iodothyronine deiodinases: current concepts and challenges. Endocrinology 150(3):1097–1107

    PubMed  CAS  Google Scholar 

  • Starr VL, Convit A (2007) Diabetes, sugar-coated but harmful to the brain. Curr Opin Pharmacol 7(6):638–642

    PubMed  CAS  Google Scholar 

  • Steen E et al (2005) Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease–is this type 3 diabetes? J Alzheimers Dis 7(1):63–80

    PubMed  CAS  Google Scholar 

  • Stefani MR, Gold PE (2001) Intrahippocampal infusions of k-atp channel modulators influence spontaneous alternation performance: relationships to acetylcholine release in the hippocampus. J Neurosci 21(2):609–614

    PubMed  CAS  Google Scholar 

  • Sui L et al (2005) Impairment in short-term but enhanced long-term synaptic potentiation and ERK activation in adult hippocampal area CA1 following developmental thyroid hormone insufficiency. Toxicol Sci 85(1):647–656

    PubMed  CAS  Google Scholar 

  • Sui L et al (2006) Adult-onset hypothyroidism impairs paired-pulse facilitation and long-term potentiation of the rat dorsal hippocampo-medial prefrontal cortex pathway in vivo. Brain Res 1096(1):53–60

    PubMed  CAS  Google Scholar 

  • Sui L et al (2008) Administration of triiodo-L-thyronine into dorsal hippocampus alters phosphorylation of Akt, mammalian target of rapamycin, p70S6 kinase and 4E-BP1 in rats. Neurochem Res 33(6):1065–1076

    PubMed  CAS  Google Scholar 

  • Sun MK, Alkon DL (2006) Links between Alzheimer’s disease and diabetes. Drugs Today (Barc) 42(7):481–489

    CAS  Google Scholar 

  • Talley CP et al (2002) Vagotomy attenuates effects of L-glucose but not of D-glucose on spontaneous alternation performance. Physiol Behav 77(2–3):243–249

    PubMed  CAS  Google Scholar 

  • Thompson CC, Potter GB (2000) Thyroid hormone action in neural development. Cereb Cortex 10(10):939–945

    PubMed  CAS  Google Scholar 

  • Torrance CJ et al (1997) Characterization of a low affinity thyroid hormone receptor binding site within the rat GLUT4 gene promoter. Endocrinology 138(3):1215–1223

    PubMed  CAS  Google Scholar 

  • Tsigos C, Chrousos GP (2002) Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J Psychosom Res 53(4):865–871

    PubMed  Google Scholar 

  • Vallortigara J et al (2009) Thyroid hormone receptor alpha plays an essential role in the normalisation of adult-onset hypothyroidism-related hypoexpression of synaptic plasticity target genes in striatum. J Neuroendocrinol 21(1):49–56

    PubMed  CAS  Google Scholar 

  • van den Berg E et al (2009) Type 2 diabetes mellitus, hypertension, dyslipidemia and obesity: A systematic comparison of their impact on cognition. Biochim Biophys Acta 1792(5):470–481

    PubMed  Google Scholar 

  • van Raalte DH et al (2011) Low-dose glucocorticoid treatment affects multiple aspects of intermediary metabolism in healthy humans: a randomised controlled trial. Diabetologia 54(8):2103–2112

    PubMed  CAS  Google Scholar 

  • Vannucci SJ et al (1998) GLUT4 glucose transporter expression in rodent brain: effect of diabetes. Brain Res 797(1):1–11

    PubMed  CAS  Google Scholar 

  • Venditti P, Di Meo S (2006) Thyroid hormone-induced oxidative stress. Cell Mol Life Sci 63(4):414–434

    PubMed  CAS  Google Scholar 

  • Venero C et al (2005) Anxiety, memory impairment, and locomotor dysfunction caused by a mutant thyroid hormone receptor alpha1 can be ameliorated by T3 treatment. Genes Dev 19(18):2152–2163

    PubMed  CAS  Google Scholar 

  • Vondra K et al (2005) Thyroid gland diseases in adult patients with diabetes mellitus. Minerva Endocrinol 30(4):217–236

    PubMed  CAS  Google Scholar 

  • Wajchenberg BL et al (1984) Glucocorticoids, glucose metabolism and hypothalamic-pituitary-adrenal axis. Adv Exp Med Biol 171:25–44

    PubMed  CAS  Google Scholar 

  • Walker DL et al (1991) Naloxone modulates the behavioral effects of cholinergic agonists and antagonists. Psychopharmacology 105(1):57–62

    PubMed  CAS  Google Scholar 

  • Wang M (2011) Inhibitors of 11beta-hydroxysteroid dehydrogenase type 1 in antidiabetic therapy. Handb Exp Pharmacol (203):127–146

  • Watson GS, Craft S (2004) Modulation of memory by insulin and glucose: neuropsychological observations in Alzheimer's disease. Eur J Pharmacol 490(1–3):97–113

    PubMed  CAS  Google Scholar 

  • Weinstein SP et al (1994) Thyroid hormone increases basal and insulin-stimulated glucose transport in skeletal muscle. The role of GLUT4 glucose transporter expression. Diabetes 43(10):1185–1189

    PubMed  CAS  Google Scholar 

  • Wilber JF, Utiger RD (1969) The effect of glucocorticoids on thyrotropin secretion. J Clin Invest 48(11):2096–2103

    PubMed  CAS  Google Scholar 

  • Wilcoxon JS et al (2007) Behavioral inhibition and impaired spatial learning and memory in hypothyroid mice lacking thyroid hormone receptor alpha. Behav Brain Res 177(1):109–116

    PubMed  CAS  Google Scholar 

  • Winocur G, Gagnon S (1998) Glucose treatment attenuates spatial learning and memory deficits of aged rats on tests of hippocampal function. Neurobiol Aging 19(3):233–241

    PubMed  CAS  Google Scholar 

  • Wulf A et al (2008) T3-mediated expression of PGC-1alpha via a far upstream located thyroid hormone response element. Mol Cell Endocrinol 287(1–2):90–95

    PubMed  CAS  Google Scholar 

  • Wyse AT et al (2004) Training in inhibitory avoidance causes a reduction of Na+, K+-ATPase activity in rat hippocampus. Physiol Behav 80(4):475–479

    PubMed  CAS  Google Scholar 

  • Yasui S et al (2008) Insulin activates ATP-sensitive potassium channels via phosphatidylinositol 3-kinase in cultured vascular smooth muscle cells. J Vasc Res 45(3):233–243

    PubMed  CAS  Google Scholar 

  • Zhao WQ et al (2004) Insulin and the insulin receptor in experimental models of learning and memory. Eur J Pharmacol 490(1–3):71–81

    PubMed  CAS  Google Scholar 

  • Zhu DF et al (2011) Effect of thyroxine on synaptotagmin 1 and SNAP-25 expression in dorsal hippocampus of adult-onset hypothyroid rats. J Endocrinol Invest

Download references

Conflict of Interest

No potential conflict of interest relevant to this article was reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. C. McNay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jahagirdar, V., McNay, E.C. Thyroid hormone’s role in regulating brain glucose metabolism and potentially modulating hippocampal cognitive processes. Metab Brain Dis 27, 101–111 (2012). https://doi.org/10.1007/s11011-012-9291-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-012-9291-0

Keywords

Navigation