Skip to main content

Advertisement

Log in

Knocking down Wnt9a mRNA levels increases cellular proliferation

  • Research Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Wnts are secreted lipid-modified signaling proteins. Activation of Wnt signalling in many tissues has also been associated with cancer. In many eukaryotes, expression of nuclear-encoded mRNA can be strongly inhibited by the presence of a small double-stranded RNA corresponding to exon sequences in the mRNA. In this study we used pAVU6+27 vectors, which have SalI and XbaI clone sites, to construct the siRNA expression vectors for human Wnt9a. Two kinds of small interfering RNA inserts were designed, synthesized and visually tested for efficacy by in situ hybridization, the results demonstrated that in the cells, transfected with U6+27 cassettes with anti-Wnt9a hairpin siRNA inserts, dramatically reduced Wnt9a signals were observed as compared to the untransfected cells. The results of flow cytometry analysis showed that the cell proliferation was promoted after lowering expression of the human Wnt9a in MCF-7 cells by RNAi, but was inhibited after over-expression of human Wnt9a. These results suggests the expression level of human Wnt9a in MCF-7 that breast cancer may play a role in adjusting the rate of cellular proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T, Yates JR, Nusse R (2003) Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423:448–452

    Article  PubMed  CAS  Google Scholar 

  2. Nelson WJ, Nusse R (2004) Convergence of Wnt, catenin, and cadherin pathways. Science 303:1483–1487

    Article  PubMed  CAS  Google Scholar 

  3. Cadigan KM, Nusse R (1997) Wnt signaling: a common theme in animal development. Genes Dev 11:3286–3305

    Article  PubMed  CAS  Google Scholar 

  4. Jamora C, Fuchs E (2002) Intercellular adhesion, signalling and the cytoskeleton. Nat Cell Biol 4:101–108

    Article  Google Scholar 

  5. Reya1 T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434:843–850

    Article  Google Scholar 

  6. Polakis P (2000) Wnt signaling and cancer. Genes Dev 14:1837–1851

    PubMed  CAS  Google Scholar 

  7. Thiery JP (2002) Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer 2:442–454

    Article  PubMed  CAS  Google Scholar 

  8. Pagliarini RA, Xu T (2003) A genetic screen in Drosophila for metastatic behavior. Science 302:1227–1231

    Article  PubMed  CAS  Google Scholar 

  9. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  10. Montgomery MK, Xu S, Fire A (1998) RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc Natl Acad Sci USA 95:15502–15507

    Article  PubMed  CAS  Google Scholar 

  11. Fearon ER, Cadigan KM (2005) Wnt signaling glows with RNAi. Science. 308:801–808

    Article  PubMed  CAS  Google Scholar 

  12. Liu XD, Ma SM, Liu Y, Liu SZ, Sehon A (2004) Short hairpin RNA and retroviral vector-mediated silencing of p53 in mammalian cells. Biochem Biophys Res Commun 324:1173–1178

    Article  PubMed  CAS  Google Scholar 

  13. Zamore PD, Tuschl T, Sharp PA, Bartel DP (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101:25–33

    Article  PubMed  CAS  Google Scholar 

  14. Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15:188–200

    Article  PubMed  CAS  Google Scholar 

  15. Tavernarakis N, Wang SL, Dorovkov M, Ryazanov A, Driscoll M (2000) Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes. Nat Genet 24:180–183

    Article  PubMed  CAS  Google Scholar 

  16. Kennerdell JR, Carthew RW (2000) Heritable gene silencing in Drosophila using double-stranded RNA. Nat Biotechnol 18:896–898

    Article  PubMed  CAS  Google Scholar 

  17. Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366

    Article  PubMed  CAS  Google Scholar 

  18. Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I, Baillie DL, Fire A, Ruvkun G, Mello CC (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106:23–34

    Article  PubMed  CAS  Google Scholar 

  19. Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 15:2654–2659

    Article  PubMed  CAS  Google Scholar 

  20. Knight SW, Bass BL (2001) A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science 293:2269–2271

    Article  PubMed  CAS  Google Scholar 

  21. Wu MT, Wu RH, Hung CF, Cheng TL, Tsai WH, Chang WT (2005) Simple and efficient DNA vector-based RNAi systems in mammalian cells. Biochem Biophys Res Commun 330:53–59

    Article  PubMed  CAS  Google Scholar 

  22. Samuel CE (2001) Antiviral actions of interferons. Clin Microbiol Rev 14:778–809

    Article  PubMed  CAS  Google Scholar 

  23. Geiss G, Jin G, Guo J, Bumgarner R, Katze MG, Sen GC (2001) A comprehensive view of regulation of gene expression by double-stranded RNA-mediated cell signaling. J Biol Chem 276:30178–30182

    PubMed  CAS  Google Scholar 

  24. Gil J, Esteban M (2000) Induction of apoptosis by the dsRNA-dependent protein kinase (PKR): mechanism of actions. Apoptosis 5:107–114

    Article  PubMed  CAS  Google Scholar 

  25. Player MR, Torrence PF (1998) The 2-5A system: modulation of viral and cellular processes through acceleration of RNA degradation. Pharmacol Ther 78:55–113

    Article  PubMed  CAS  Google Scholar 

  26. Paul CP, Good PD, Winer I, Engelke DR (2002) Effective expression of small interfering RNA in human cells. Nat Biotechnol 20:505–508

    Article  PubMed  CAS  Google Scholar 

  27. Novina CD, Sharp PA (2004) The RNAi revolution. Nature 430:161–164

    Article  PubMed  CAS  Google Scholar 

  28. Tuschl T (2002) Expanding small RNA interference. Nat Biotechnol 20:446–448

    Article  PubMed  CAS  Google Scholar 

  29. Agami R (2002) RNAi and related mechanisms and their potential use for therapy. Curr Opin Chem Biol 6:829–834

    Article  PubMed  CAS  Google Scholar 

  30. Mazieres J, You L, He B, Xu Z, Lee AY, Mikami I, McCormick F, Jablons DM (2005) Inhibition of Wnt16 in human acute lymphoblastoid leukemia cells containing the translocation induces apoptosis. Oncogene 24:5396–5400

    Article  PubMed  CAS  Google Scholar 

  31. Kemp G, Willems E, Abdo S, Lambiv S, Leyns L (2005) Expression of all Wnt genes and their secreted antagonists during mouse blastocystand postimplantation development. Dev Dynam 233:1064–1075

    Article  CAS  Google Scholar 

  32. Spater D, Hill TP, O’sullivan RJ, Gruber M, Conner DA, Hartmann C (2006) Wnt9a signaling is required for joint integrity and regulation of Ihh during chondrogenesis. Development 133:3039–3049

    Article  PubMed  Google Scholar 

  33. Good PD, Krikos A, Li SX, Bertrand E, Lee NS, Giver L, Ellington A, Zaia JA, Rossi JJ, Engelke DR (1997) Expression of small, therapeutic RNAs in human cell nuclei. Gene Ther 4:45–54

    Article  PubMed  CAS  Google Scholar 

  34. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Nature Science Foundation of China (No. 30371493) and the Major State Basic Research Development Program of China (973 program) (No. G1999055901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangxiu Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, Y., Lin, G., Zhang, Q. et al. Knocking down Wnt9a mRNA levels increases cellular proliferation. Mol Biol Rep 35, 73–79 (2008). https://doi.org/10.1007/s11033-007-9055-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-007-9055-9

Keywords

Navigation