Skip to main content
Log in

Cloning, structural features, and expression analysis of resistance gene analogs in Tobacco

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Using degenerate primers based on the conserved nucleotide binding site (NBS) and protein kinase domain (PKD), 100 resistance gene analogs (RGAs) were isolated from tobacco variety Nicotiana repanda. BLASTx search against the GenBank database revealed that 27 belong to the NBS class and 73 belong to the protein kinase (PK) class. Cluster analysis and multiple sequence alignment of the deduced protein sequences indicate that RGAs of the NBS class can be divided into two groups: toll/interleukin receptor (TIR) and non-TIR types. Both types possess 6 conserved motifs (P-loop, RNBS-A, Kinase-2, RNBS-B, RNBS-C, GLPL). Based on their sequence similarity, the tobacco RGAs of the PK class were assigned to 8 subclasses. We examined their expression after infection with either Tobacco mosaic virus (TMV) or the tobacco black shank pathogen (Phytophthora parasitica var. nicotianae). The expression levels of 4 RGAs of the PK class were significantly elevated by TMV and 1 RGA of the PK class and 3 RGAs of the NBS class were up-regulated by P. parasitica var. nicotianae. The expression of two RGAs of the PK class was induced by P. parasitica var. nicotianae. Infection by either TMV or P. parasitica var. nicotianae enhanced the expression of NtRGA2, a RGA of the PK class. The present study shows that RGAs are abundant in the tobacco genome and the identification of tobacco RGAs induced by pathogens should provide valuable information for cloning related resistance genes in tobacco.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

NBS:

Nucleotide binding site

PKD:

Protein kinase domain

RGAs:

Resistance gene analogs

PK:

Protein kinase

TIR:

Toll/interleukin receptor

TMV:

Tobacco mosaic virus

LRR:

Leucine-rich repeat

ORF:

Open reading frame

RT:

Reverse transcription

MAPK:

Mitogen-activated protein kinase

References

  1. Bendahmane A, Farnham G, Moffett P, Baulcombe DC (2002) Constitutive gain-of-function mutants in a nucleotide binding site-leucine rich repeat protein encoded at the Rx locus of potato. Plant J 32:195–204

    Article  CAS  PubMed  Google Scholar 

  2. Xiao WK, Xu ML, Zhao JR, Wang FG, Li JS, Dai JR (2006) Genome-wide isolation of resistance gene analogs in maize (Zea mays L.). Theor Appl Genet 113:63–72

    Article  CAS  Google Scholar 

  3. McDowell JM, Woffenden BJ (2003) Plant disease resistance genes: recent insights and potential applications. Trends Biotechnol 21:178–183

    Article  CAS  PubMed  Google Scholar 

  4. Dangl JL, Jones JDG (2001) Plant pathogens and integrated defense responses to infection. Nature 411:826–833

    Article  CAS  PubMed  Google Scholar 

  5. Jones JDG (2001) Putting knowledge of plant disease resistance genes to work. Curr Opin Plant Biol 4:281–287

    Article  CAS  PubMed  Google Scholar 

  6. Maule AJ, Daowen W (1996) Seed transmission of plant viruses: a lesson in biological complexity. Trends Microbiol 4:153–158

    Article  CAS  PubMed  Google Scholar 

  7. Kanazin V, Marek LF, Shoemaker RC (1996) Resistance gene analogs are conserved and clustered in soybean. Proc Natl Acad Sci USA 93:11746–11750

    Article  CAS  PubMed  Google Scholar 

  8. Yu Y, Buss G, Maroof M (1996) Isolation of a superfamily of candidate resistance genes in soybean based on a conserved nucleotide binding site. Proc Natl Acad Sci USA 93:11751–11756

    Article  CAS  PubMed  Google Scholar 

  9. Collins NC, Webb CA, Seah S, Ellis JG, Hulbert SH, Pryor A (1998) The isolation and mapping of disease resistance gene analogs in maize. Mol Plant Microbe Interact 11:968–978

    Article  CAS  PubMed  Google Scholar 

  10. Meyers BC, Shen KA, Rohani P, Gaut BS, Michelmore RW (1998) Receptor-like genes in the major resistance locus of lettuce are subject to divergent selection. Plant Cell 10:1833–1846

    Article  CAS  PubMed  Google Scholar 

  11. Huettel B, Santra D, Muehlbauer J, Kahl G (2002) Resistance gene analogues of chickpea (Cicer arietinum L.): isolation, genetic mapping and association with a Fusarium resistance gene cluster. Theor Appl Genet 105:479–490

    Article  CAS  PubMed  Google Scholar 

  12. Gao YL, Guo WZ, Wang L, Zhang TZ (2006) Isolation and characterization of resistance and defense gene analogs in cotton (Gossypium barbadense L.). Sci China C Life Sci 49:530–542

    Article  CAS  PubMed  Google Scholar 

  13. Pflieger S, Palloix A, Caranta C, Blattes A, Lefebvre V (2001) Defense response genes co-localize with quantitative disease resistance loci in pepper. Theor Appl Genet 103:920–929

    Article  CAS  Google Scholar 

  14. Chen X, Soria MA, Yan G, Sun J, Dubcovsky J (2003) Development of sequence tagged site and cleaved amplified polymorphic sequence markers for wheat stripe rust resistance gene Yr5. Crop Sci 43:2058–2064

    Article  CAS  Google Scholar 

  15. Shi ZX, Chen XM, Line RF, Leung H, Wellings CR (2001) Development of resistance gene analog polymorphism markers for the Yr9 gene resistance to wheat stripe rust. Genome 44:509–516

    Article  CAS  PubMed  Google Scholar 

  16. Radwan O, Bouzidi MF, Nicolas P, Mouzeyar S (2004) Development of PCR markers for the Pl5/Pl8 locus for resistance to Plasmopara halstedii in sunflower, Helianthus annuus L. from complete CC-NBS-LRR sequences. Theor Appl Genet 109:176–185

    Article  CAS  PubMed  Google Scholar 

  17. Zhang ZZ, Xu JS, Xu QJ, Larkin P, Xin ZY (2004) Development of novel PCR markers linked to the BYDV resistance gene Bdv2 useful in wheat for marker-assisted selection. Theor Appl Genet 109:433–439

    Article  CAS  PubMed  Google Scholar 

  18. Lanaud C, Risterucci AM, Pieretti I, N’Goran AK, Fargeas D (2004) Characterization and genetic mapping of resistance and defence gene analogs in cocoa (Theobroma cacao L.). Mol Breed 13:211–227

    Article  CAS  Google Scholar 

  19. Noir S, Combes MC, Anthony F, Lashermes P (2001) Origin, diversity and evolution of NBS-type disease-resistance gene homologues in coffee trees (Coffea L.). Mol Gen Genomics 265:654–662

    Article  CAS  Google Scholar 

  20. Liu JJ, Ekramoddoullah AKM (2003) Isolation, genetic variation and expression of TIR-NBS-LRR resistance gene analogs from western white pine (Pinus monticola Dougl. ex. D. Don.). Mol Gen Genomics 270:432–441

    Article  CAS  Google Scholar 

  21. Pflieger S, Lefebvre V, Caranta C, Blattes A, Goffinet B, Palloix A (1999) Disease resistance gene analogs as candidates for QTLs involved in pepper-pathogen interactions. Genome 42:1100–1110

    Article  CAS  PubMed  Google Scholar 

  22. Yamamoto E, Knap HT (2001) Soybean receptor-like protein kinase genes: paralogous divergence of a gene family. Mol Biol Evol 18:1522–1531

    CAS  PubMed  Google Scholar 

  23. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  Google Scholar 

  24. Nicholas KB, Nicholas HB Jr, Deerfield II DW (1997) GeneDoc: analysis and visualization of genetic variation. EMBnet News, 4: 14–17. Available from http://www.no. embnet.org/embnet.news/vol4_2/contents.html

  25. Kumar S, Dudley J, Nei M, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306

    Article  CAS  PubMed  Google Scholar 

  26. Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, Sobral BW, Young ND (1999) Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide binding superfamily. Plant J 20:317–332

    Article  CAS  PubMed  Google Scholar 

  27. He CY, Tian AG, Zhang JS, Zhang ZY, Gai JY, Chen SY (2003) Isolation and characterization of a full-length resistance gene homolog from soybean. Theor Appl Genet 106:786–793

    CAS  PubMed  Google Scholar 

  28. Radwan O, Bouzidi MF, Vear F, Philippon J, De Labrouhe DT, Nicolas P et al (2003) Identification of non-TIR-NBS-LRR markers linked to the Pl5/Pl8 locus for resistance to downy mildew in sunflower. Theor Appl Genet 106:1438–1446

    CAS  PubMed  Google Scholar 

  29. Yan GP, Chen XM, Line RE (2003) Resistance gene-analog polymorphism markers co-segregating with the Yr5 gene for resistance to wheat stripe rust. Theor Appl Genet 106:636–643

    CAS  PubMed  Google Scholar 

  30. Meyers BC, Kozik A, Griego A, Kuang HH, Michelmore RW (2003) Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15(4):809–834

    Article  CAS  PubMed  Google Scholar 

  31. Goff SA, Ricke D, Lan TH, Presting G, Wang RL, Dunn M et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:79–92

    Article  Google Scholar 

  32. Hanks SK, Hunter T (1995) The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J 9:576–596

    CAS  PubMed  Google Scholar 

  33. Shirasu K, Schulze-Lefert P (2003) Regulators of cell death in disease resistance. Plant Mol Biol 44:371–385

    Article  Google Scholar 

  34. Whitham S, Dinesh-Kumar SP, Choi D, Hehl R, Corr C, Baker B (1994) The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell 78:1101–1115

    Article  CAS  PubMed  Google Scholar 

  35. Dinesh-Kumar SP, Tham WH, Baker BJ (2000) Structure-function analysis of the tobacco mosaic virus resistance gene N. Proc Natl Acad Sci USA 97:14789–14794

    Article  CAS  PubMed  Google Scholar 

  36. Dinesh-Kumar SP, Baker BJ (2000) Alternatively spliced N resistance gene transcripts: their possible role in tobacco mosaic virus resistance. Proc Natl Acad Sci USA 97:1908–1913

    Article  CAS  PubMed  Google Scholar 

  37. Mestre P, Baulcombe DC (2006) Elicitor-mediated oligomerization of the tobacco N disease resistance protein. Plant Cell 18:491–501

    Article  CAS  PubMed  Google Scholar 

  38. Zhang S, Klessig DF (2001) MAPK cascade in plant defense signaling. Trends Plant Sci 6:520–527

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financially supported by Yunnan Science and Technology Project (2008CD194) and Science and Technology Project of Yunnan Provincial Tobacco Monopoly Bureau (07A03 and 05-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuping Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, Y., Xu, Z., Jiao, F. et al. Cloning, structural features, and expression analysis of resistance gene analogs in Tobacco. Mol Biol Rep 37, 345–354 (2010). https://doi.org/10.1007/s11033-009-9749-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9749-2

Keywords

Navigation