Skip to main content
Log in

Transcriptome profiling and molecular marker discovery in red pepper, Capsicum annuum L. TF68

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Transcriptome from high throughput sequencing-by-synthesis is a good resource of molecular markers. In this study, we present utility of massively parallel sequencing by synthesis for profiling the transcriptome of red pepper (Capsicum annuum L. TF68) using 454 GS-FLX pyrosequencing. Through the generation of approximately 30.63 megabases (Mb) of expressed sequence tag (EST) data with the average length of 375 base pairs (bp), 9,818 contigs and 23,712 singletons were obtained by raw reads assembly. Using BLAST alignment against NCBI non-redundant and a UniProt protein database, 30% of the tentative consensus sequences were assigned to specific function annotation, while 24% returned alignments of unknown function, leaving up to 46% with no alignment. Functional classification using FunCat revealed that sequences with putative known function were distributed cross 18 categories. All unigenes have an approximately equal distribution on chromosomes by aligning with tomato (Solanum lycopersicum) pseudomolecules. Furthermore, 1,536 high quality single nucleotide discrepancies were discovered using the Bukang mature fruit cDNA collection (dbEST ID: 23667) as a reference. Moreover, 758 simple sequence repeat (SSR) motif loci were mined from 614 contigs, from which 572 primer sets were designed. The SSR motifs corresponded to di- and tri- nucleotide motifs (27.03 and 61.92%, respectively). These molecular markers may be of great value for application in linkage mapping and association mapping research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Howard LR, Talcott ST, Brenes CH, Villalon B (2000) Changes in phytochemical and antioxidant activity of selected pepper cultivars (Capsicum species) as influenced by maturity. J Agr Food Chem 48(5):1713–1720. doi:10.1021/jf990916t

    Article  CAS  Google Scholar 

  2. An CS, Kim SC, Go SL (1996) Analysis of red pepper (Capsicum annuum) genome. J Plant Biol 39:57–61

    CAS  Google Scholar 

  3. Huh JH, Kang BC, Nahm SH, Kim S, Ha KS, Lee MH, Kim BD (2001) A candidate gene approach identified phytoene synthase as the locus for mature fruit color in red pepper (Capsicum spp.). Theor Appl Genet 102(4):524–530. doi:10.1007/s001220051677

    Article  CAS  Google Scholar 

  4. Rao GU, Ben Chaim A, Borovsky Y, Paran I (2003) Mapping of yield-related QTLs in pepper in an interspecific cross of Capsicum annuum and C. frutescens. Theor Appl Genet 106(8):1457–1466. doi:10.1007/s00122-003-1204-5

    PubMed  CAS  Google Scholar 

  5. Lee CJ, Yoo E, Shin J, Lee J, Hwang HS, Kim BD (2005) Non-pungent Capsicum contains a deletion in the capsaicinoid synthetase gene, which allows early detection of pungency with SCAR markers. Mol Cells 19(2):262–267

    PubMed  CAS  Google Scholar 

  6. Kim DS, Kim DH, Yoo JH, Kim BD (2006) Cleaved amplified polymorphic sequence and amplified fragment length polymorphism markers linked to the fertility restorer gene in chili pepper (Capsicum annuum L.). Mol Cells 21(1):135–140

    Article  PubMed  CAS  Google Scholar 

  7. Minamiyama Y, Tsuro M, Kubo T, Hirai M (2007) QTL analysis for resistance to Phytophthora capsici in pepper using a high density SSR-based map. Breed Sci 57(2):129–134. doi:10.1270/jsbbs.57.1291

    Article  CAS  Google Scholar 

  8. Truong HTH, Kim KT, Kim S, Chae Y, Park JH, Oh DG, Cho MC (2010) Comparative mapping of consensus SSR markers in an intraspecific F8 recombinant inbred line population in Capsicum. Hort Environ Biotechnol 51(3):193–206

    CAS  Google Scholar 

  9. Schmid K, Törjék O, Meyer R, Schmuths H, Hoffmann M, Altmann T (2006) Evidence for a large-scale population structure of Arabidopsis thaliana from genome-wide single nucleotide polymorphism markers. Theor Appl Genet 112(6):1104–1114. doi:10.1007/s00122-006-0212-7

    Article  PubMed  CAS  Google Scholar 

  10. Lee GA, Koh HJ, Chung HK, Dixit A, Chung JW, Ma KH, Lee SY, Lee JR, Lee GS, Gwag JG, Kim TS, Park YJ (2009) Development of SNP-based CAPS and dCAPS markers in eight different genes involved in starch biosynthesis in rice. Mol Breeding 24(1):93–101. doi:10.1007/s11032-009-9278-7

    Article  CAS  Google Scholar 

  11. Hu J, Nakatani M, Mizuno K, Fujimura T (2004) Development and characterization of microsatellite markers in sweetpotato. Breed Sci 54(2):177–188. doi:10.1270/jsbbs.54.177

    Article  CAS  Google Scholar 

  12. Varshney RK (2009) Gene-based marker systems in plants: high throughput approaches for marker discovery and genotyping. In: Jain SM, Brar DS (eds) Molecular techniques in crop improvement. Springer, Netherlands, pp 119–142. doi:10.1007/978-90-481-2967-6_5

    Google Scholar 

  13. McCombie WR, Adams MD, Kelley JM, FitzGerald MG, Utterback TR, Khan M, Dubnick M, Kerlavage AR, Craig Venter J, Fields C (1992) Caenorhabditis elegans expressed sequence tags identify gene families and potential disease gene homologues. Nat Genet 1(2):124–131. doi:10.1038/ng0592-124

    Article  PubMed  CAS  Google Scholar 

  14. Ameline-Torregrosa C, Dumas B, Krajinski F, Esquerre-Tugaye MT, Jacquet C (2006) Transcriptomic approaches to unravel plant–pathogen interactions in legumes. Euphytica 147(1):25–36. doi:10.1007/s10681-006-6767-1

    Article  CAS  Google Scholar 

  15. Cohen D, Bogeat-Triboulot MB, Tisserant E, Balzergue S, Martin-Magniette ML, Lelandais G, Ningre N, Renou J-P, Tamby JP, Le Thiec D, Hummel I (2010) Comparative transcriptomics of drought responses in populus: a meta-analysis of genome-wide expression profiling in mature leaves and root apices across two genotypes. BMC Genomics 11(1):630. doi:10.1186/1471-2164-11-630

    Article  PubMed  Google Scholar 

  16. Roberts GC, Smith CWJ (2002) Alternative splicing: combinatorial output from the genome. Curr Opin Chem Biol 6(3):375–383. doi:10.1016/s1367-5931(02)00320-4

    Article  PubMed  CAS  Google Scholar 

  17. Lee S, Yun SC (2006) The ozone stress transcriptome of pepper (Capsicum annuum L.). Mol Cells 21(2):197–205

    PubMed  CAS  Google Scholar 

  18. Gore MA, Wright MH, Ersoz ES, Bouffard P, Szekeres ES, Jarvie TP, Hurwitz BL, Narechania A, Harkins TT, Grills GS, Ware DH, Buckler ES (2009) Large-scale discovery of gene-enriched SNPs. Plant Genome 2(2):121–133. doi:10.3835/plantgenome2009.01.0002

    Article  CAS  Google Scholar 

  19. Barchi L, Bonnet J, Boudet C, Signoret P, Nagy I, Lanteri S, Palloix A, Lefebvre V (2007) A high-resolution, intraspecific linkage map of pepper (Capsicum annuum L.) and selection of reduced recombinant inbred line subsets for fast mapping. Genome 50(1):51–60. doi:10.1139/g06-140

    Article  PubMed  CAS  Google Scholar 

  20. Kim HJ, Nahm SH, Lee HR, Yoon GB, Kim KT, Kang BC, Choi D, Kweon O, Cho MC, Kwon JK, Han JH, Kim JH, Park MK, Ahn J, Choi S, Her N, Sung JH, Kim BD (2008) BAC-derived markers converted from RFLP linked to Phytophthora capsici resistance in pepper (Capsicum annuum L.). Theor Appl Genet 118(1):15–27. doi:10.1007/s00122-008-0873-5

    Article  PubMed  CAS  Google Scholar 

  21. Minamiyama Y, Tsuro M, Hirai M (2006) An SSR-based linkage map of Capsicum annuum. Mol Breeding 18(2):157–169. doi:10.1007/s11032-006-9024-3

    Article  CAS  Google Scholar 

  22. Bonnet J, Danan S, Boudet C, Barchi L, Sage-Palloix AM, Caromel B, Palloix A, Lefebvre V (2007) Are the polygenic architectures of resistance to Phytophthora capsici and P. parasitica independent in pepper? Theor Appl Genet 115(2):253–264. doi:10.1007/s00122-007-0561-x

    Article  PubMed  Google Scholar 

  23. Ortega RG, Español CP, Zueco JC (1991) Genetics of resistance to Phytophthora capsici in the pepper line ‘SCM-334’. Plant Breeding 107(1):50–55. doi:10.1111/j.1439-0523.1991.tb00527.x

    Article  Google Scholar 

  24. Chen YA, Lin CC, Wang CD, Wu HB, Hwang PI (2007) An optimized procedure greatly improves EST vector contamination removal. BMC Genomics 8(1):416. doi:10.1186/1471-2164-8-416

    Article  PubMed  CAS  Google Scholar 

  25. Li S, Chou HH (2004) Lucy2: an interactive DNA sequence quality trimming and vector removal tool. Bioinformatics 20(16):2865–2866. doi:10.1093/bioinformatics/bth302

    Article  PubMed  CAS  Google Scholar 

  26. Ruepp A, Zollner A, Maier D, Albermann K, Hani J, Mokrejs M, Tetko I, Guldener U, Mannhaupt G, Munsterkotter M, Mewes HW (2004) The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucl Acids Res 32(18):5539–5545. doi:10.1093/nar/gkh894

    Article  PubMed  CAS  Google Scholar 

  27. Kim KY (2004) Developing one-step program (SSR MANAGER) for rapid identification of clones with SSRs and primer designing. MsD thesis. Seoul National University, Seoul

  28. Thabuis A, Palloix A, Pflieger S, Daubèze AM, Caranta C, Lefebvre V (2003) Comparative mapping of Phytophthora resistance loci in pepper germplasm: evidence for conserved resistance loci across Solanaceae and for a large genetic diversity. Theor Appl Genet 106(8):1473–1485. doi:10.1007/s00122-003-1206-3

    PubMed  CAS  Google Scholar 

  29. Weber APM, Weber KL, Carr K, Wilkerson C, Ohlrogge JB (2007) Sampling the Arabidopsis transcriptome with massively parallel pyrosequencing. Plant Physiol 144(1):32–42. doi:10.1104/pp.107.096677

    Article  PubMed  CAS  Google Scholar 

  30. Novaes E, Drost D, Farmerie W, Pappas G, Grattapaglia D, Sederoff R, Kirst M (2008) High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome. BMC Genomics 9(1):312. doi:10.1186/1471-2164-9-312

    Article  PubMed  Google Scholar 

  31. Livingstone KD, Lackney VK, Blauth JR, van Wijk R, Jahn MK (1999) Genome mapping in Capsicum and the evolution of genome structure in the Solanaceae. Genetics 152(3):1183–1202

    PubMed  CAS  Google Scholar 

  32. Barbazuk WB, Scott JE, Hsin DC, Li L, Patrick SS (2007) SNP discovery via 454 transcriptome sequencing. Plant J 51(5):910–918. doi:10.1111/j.1365-313X.2007.03193.x

    Article  PubMed  CAS  Google Scholar 

  33. Hyten D, Cannon S, Song Q, Weeks N, Fickus E, Shoemaker R, Specht J, Farmer A, May G, Cregan P (2010) High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence. BMC Genomics 11(1):38. doi:10.1186/1471-2164-11-38

    Article  PubMed  Google Scholar 

  34. Parchman T, Geist K, Grahnen J, Benkman C, Buerkle C (2010) Transcriptome sequencing in an ecologically important tree species: assembly, annotation, and marker discovery. BMC Genomics 11(1):180. doi:10.1186/1471-2164-11-180

    Article  PubMed  Google Scholar 

  35. Lee HR, Bae IH, Park SW, Kim HJ, Min WK, Han JH, Kim KT, Kim BD (2009) Construction of an integrated pepper map using RFLP, SSR, CAPS, AFLP, WRKY, rRAMP, and BAC end sequences. Mol Cells 27(1):21–37. doi:10.1007/s10059-009-0002-6

    Article  PubMed  CAS  Google Scholar 

  36. Lee JM, Nahm SH, Kim YM, Kim BD (2004) Characterization and molecular genetic mapping of microsatellite loci in pepper. Theor Appl Genet 108(4):619–627. doi:10.1007/s00122-003-1467-x

    Article  PubMed  CAS  Google Scholar 

  37. Kim HJ, Baek KH, Lee SW, Kim JE, Lee BW, Cho HS, Kim WT, Choi D, Hur CG (2008) Pepper EST database: comprehensive in silico tool for analyzing the chili pepper (Capsicum annuum) transcriptome. Bmc Plant Biol 8(1):101. doi:10.1186/1471-2229-8-101

    Article  PubMed  Google Scholar 

  38. Yu JW, Dixit A, Ma KH, Chung JW, Park YJ (2009) A study on relative abundance, composition and length variation of microsatellites in 18 underutilized crop species. Genet Resour Crop Ev 56(2):237–246. doi:10.1007/s10722-008-9359-1

    Article  CAS  Google Scholar 

  39. Yi G, Lee J, Lee S, Choi D, Kim BD (2006) Exploitation of pepper EST–SSRs and an SSR-based linkage map. Theor Appl Genet 114(1):113–130. doi:10.1007/s00122-006-0415-y

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Agenda project (Grant No. 200901OFT071942004) of the Rural Development Administration (RDA), Republic of Korea. We are grateful for and acknowledge use of the tomato genome sequence, which was generated by the International Tomato Genome Sequencing Consortium (http://solgenomics.net/tomato/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Jin Park.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2011_1102_MOESM1_ESM.xls

Supplementary material 1: Annotation and FunCat results of all contigs and singletons in Capsicum annuum L. TF68 by BLAST against UniProt (XLS 11.632 kb)

11033_2011_1102_MOESM2_ESM.xls

Supplementary material 2: SNP discovery by mapping Capsicum annuum L. TF68 reads to NCBI Bukang cDNA library (XLS 892 kb)

11033_2011_1102_MOESM3_ESM.xls

Supplementary material 3: SSR discovery and primer information revealed by ARGOS program from Capsicum annuum L. TF68 contigs (XLS 219 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, FH., Cho, MC. & Park, YJ. Transcriptome profiling and molecular marker discovery in red pepper, Capsicum annuum L. TF68. Mol Biol Rep 39, 3327–3335 (2012). https://doi.org/10.1007/s11033-011-1102-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-1102-x

Keywords

Navigation