Skip to main content

Advertisement

Log in

Associations of polymorphisms of folate cycle enzymes and risk of breast cancer in a Brazilian population are age dependent

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Polymorphisms in genes involved in folate metabolism have been shown to be implicated in breast cancer risk but with contradictory results. In this case–control study, we investigated the association between MTHFR C677T and A1298C, TYMS 5′-UTR, MTR A2756G and cSHMT C1420T and also the folate carrier (RFC1 G80A) and breast cancer risk in a northeastern Brazilian population. The study included 183 women diagnosed with breast cancer and 183 controls volunteers without any history of cancer. Also a significant number of healthy individuals were included for allelic frequency in the population studied. Risk of breast cancer was estimated by conditional logistic regression. An association with risk was found for women carrying the MTR A2756G polymorphic allele (AG, P = 0.0036; AG/GG, P = 0.0040), and a protective effect in carriers of the RFC1 G80A polymorphic allele (GA, P = 0.0015; AA, P = 0.0042). Stratifying the data by age (cutoff point of 50 years old), different distributions were observed for breast cancer risk. For women ≤50 years, the risk observed in the presence of the polymorphic allele MTR 2756 (AG/GG) in the general analysis was, restricted to this age group (P = 0.0118). Conversely, for women over 50, the risk of breast cancer development was statistically associated with the MTHFR 677CT genotype, but especially significant was risk associated with the presence of the polymorphic allele of cSHMT C1420T (P = 0.0120) and the protective effect associated with the RFC1 G80A polymorphism allele (P = 0.0021), was restrict to this age group. These data indicate that the cutoff age used (50 years old) was appropriate, since it was able to discriminate risk in each age group in the population studied and also to point to the importance of age in the analyses of cancer-associated polymorphisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parkin DM (2001) Global cancer statistics in the year 2000. Lancet Oncol 2:533–543

    Article  PubMed  CAS  Google Scholar 

  2. Ferlay J, Bray F, Pisani P, Parkin DM (2004) Cancer incidence, mortality and prevalence worldwide IARC Cancer Base No 5, version 2.0

  3. Hankinson SE, Colditz GA, Willett WC (2004) Towards an integrated mod breast cancer etiology. The lifelong interplay of genes, lifestyle, and hormones. Breast Cancer Res 6:213–218

    Article  PubMed  CAS  Google Scholar 

  4. Dumitrescu RG, Cotarla I (2005) Understanding breast cancer risk—where do we stand in 2005. J Cell Mol Med 9:208–221

    Article  PubMed  CAS  Google Scholar 

  5. Weber BL, Nathanson KL (2000) Low penetrance genes associated with increased risk for breast cancer. Eur J Cancer 36:1193–1199

    Article  PubMed  CAS  Google Scholar 

  6. Ponder BA (2001) Cancer genetics. Nature 411:336–341

    Article  PubMed  CAS  Google Scholar 

  7. Forsti A, Angelini S, Festa F et al (2004) Single nucleotide polymorphisms in breast cancer. Oncol Rep 11:917–922

    PubMed  Google Scholar 

  8. Födinger M, Hörl WH, Sunder-Plassmann G (2000) Molecular biology of 5,10-methylenetetrahydrofolate reductase. Nephrol 13:20–33

    Google Scholar 

  9. Choi SW, Mason JB (2000) Folate and carcinogenesis: an integrated scheme. J Nutr 130:129–132

    PubMed  CAS  Google Scholar 

  10. Stern LL, Bagley PJ, Rosenberg IH, Selhub J (2000) Conversion of 5-formyltetrahydrofolic acid to 5-methyltetrahydrofolic acid is unimpaired in folate-adequate persons homozygous for the C677T mutation in the methylenetetrahydrofolate reductase gene. J Nutr 130:2238–2242

    PubMed  CAS  Google Scholar 

  11. Skibola CF, Smith MT, Hubbard A, Shane B, Roberts AC, Law GR, Rollinson S, Roman E, Cartwright RA, Morgan GJ (2002) Polymorphisms in the thymidylate synthase and serine hydroxymethyltransferase genes and risk of adult acute lymphocytic leukemia. Blood 99:3786–3791

    Article  PubMed  CAS  Google Scholar 

  12. Dervieux T, Furst D, Lein DO et al (2004) Polyglutamation of methotrexate with common polymorphisms in reduced folate carrier, aminoimidazole carboxamide ribonucleotide transformylase, and thymidylate synthase are associated with methotrexate effects in rheumatoid arthritis. Arthritis Rheum 50:2766–2774

    Article  PubMed  CAS  Google Scholar 

  13. Luo L, Callaway EM, Svoboda K (2008) Genetic dissection of neural circuits. Neuron 57:634–660

    Article  PubMed  CAS  Google Scholar 

  14. Süzen HS, Yüce N, Güvenç G, Duydu Y, Erke T (2005) TYMS and DPYD polymorphisms in a Turkish population. Eur J Clin Pharmacol 61:881–885

    Article  PubMed  Google Scholar 

  15. Deligezer U, Akisik EE, Dalay N (2005) Homozygosity at the C677T of the MTHFR gene is associated with increased breast cancer risk in the Turkish population. In Vivo 19:889–893

    PubMed  CAS  Google Scholar 

  16. Justenhoven C, Hamann U, Pierl CB, Rabstein S, Pesch B, Harth V, Baisch C, Vollmert C, Illig T, Brüning T, Ko Y, Brauch H (2005) One-carbon metabolism and breast cancer risk: no association of MTHFR, MTR, and TYMS polymorphisms in the GENICA study from Germany. Cancer Epidemiol Biomark Prev 14:3015–3018

    Article  CAS  Google Scholar 

  17. Ergul E, Sazci A, Utkan Z, Canturk NZ (2003) Polymorphisms in the MTHFR gene are associated with breast cancer. Tumour Biol 24:286–290

    Article  PubMed  CAS  Google Scholar 

  18. Chen J, Gammon MD, Chan W, Palomeque C, Wetmur JG, Kabat GC, Teitelbaum SL, Britton JA, Terry MB, Neugut AI, Santella RM (2005) One-carbon metabolism, MTHFR polymorphisms, and risk of breast cancer. Cancer Res 65:1606–1614

    Article  PubMed  CAS  Google Scholar 

  19. Platek ME, Shields PG, Marian C, McCann SE, Bonner MR, Nie J, Ambrosone CB, Millen AE, Ochs-Balcom HM, Quick SK et al (2009) Alcohol consumption and genetic variation in Methylenetetrahydrofolate reductase and 5-methyltetrahydrofolate homocysteine methyltransferase in relation to breast cancer risk. Cancer Epidemiol Biomark Prev 18:2453–2459

    Article  CAS  Google Scholar 

  20. Stevens VL, McCullough ML, Pavluck AL, Talbot JT, Feigelson HS, Thun MJ, Calle EE (2007) Association of polymorphisms in one-carbon metabolism genes and postmenopausal breast cancer incidence. Cancer Epidemiol Biomark Prev 16:1140–1147

    Article  CAS  Google Scholar 

  21. Chou YC, Wu MH, Yu JC, Lee MS, Yang T, Shih HL, Wu TY, Sun CA (2006) Genetic polymorphisms of the methylenetetrahydrofolate reductase gene, plasma folate levels and breast cancer susceptibility: a case–control study in Taiwan. Carcinogenesis 27:2295–2300

    Article  PubMed  CAS  Google Scholar 

  22. Yu CP, Wu MH, Chou YC, Yang T, You SL, Chen CJ, Sun CA (2007) Breast cancer risk associated with multigenotypic polymorphisms in folate-metabolizing genes: a nested case–control study in Taiwan. Anticancer Res 27:1727–1732

    PubMed  CAS  Google Scholar 

  23. Ma E, Iwasaki M, Junko I, Hamada GS, Nishimoto IN, Carvalho SM, Motola J Jr, Laginha FM, Tsugane S (2009) Dietary intake of folate, vitamin B6, and vitamin B12, genetic polymorphism of related enzymes, and risk of breast cancer: a case–control study in Brazilian women. BMC Cancer 9:122

    Article  PubMed  Google Scholar 

  24. Shrubsole MJ, Gao YT, Cai QY, Shu XO, Dai Q, Jin F, Zheng W (2006) MTR and MTRR polymorphisms, dietary intake, and breast cancer risk. Cancer Epidemiol Biomark Prev 15:586–588

    Article  CAS  Google Scholar 

  25. Kotsopoulos J, Zhang WW, Zhang S, McCready D, Trudeau M, Zhang P, Sun P, Narod SA (2008) Polymorphisms in folate metabolizing enzymes and transport proteins and the risk of breast cancer. Breast Cancer Res Treat 112:585–593

    Article  PubMed  CAS  Google Scholar 

  26. Cheng CW, Yu JC, Huang CS, Shieh JC, Fu YP, Wang HW, Wu PE, Shen CY (2008) Polymorphism of cytosolic serine hydroxymethyltransferase, estrogen and breast cancer risk among Chinese women in Taiwan. Breast Cancer Res Treat 111:145–155

    Article  PubMed  CAS  Google Scholar 

  27. Bentley AR, Raiszadeh F, Stover PJ, Hunter DJ, Hankinson SE, Cassano PA (2010) No association between cSHMT genotypes and the risk of breast cancer in the Nurses’ Health Study. Short communication. Eur J Clin Nutr 64:108–110

    Article  PubMed  CAS  Google Scholar 

  28. Xu X, Gammon MD, Wetmur JG, Bradshaw PT, Teitelbaum SL, Neugut AI, Santella RM, Chen J (2008) B-vitamin intake, one-carbon metabolism, and survival in a population-based study of women with breast cancer. Cancer Epidemiol Biomark Prev 17:2109–2116

    Article  CAS  Google Scholar 

  29. Campbell IG, Baxter SW, Eccles DM, Choong DYH (2002) Methylenetetrahydrofolate reductase polymorphism and susceptibility to breast cancer. Breast Cancer Res 4:1–4

    Article  CAS  Google Scholar 

  30. Semenza JC, Delfino RJ, Ziogas A, Anton-Culver H (2003) Breast cancer risk and methylenetetrahydrofolate reductase polymorphism. Breast Cancer Res Treat 77:217–223

    Article  PubMed  CAS  Google Scholar 

  31. Suzuki T, Matsuo K, Hirose K, Hiraki A, Kawase T, Watanabe M, Yamashita T, Iwata H, Tajima K (2008) One-carbon metabolism-related gene polymorphisms and risk of breast cancer. Carcinogenesis 29:356–362

    Article  PubMed  CAS  Google Scholar 

  32. Ericson U, Sonestedt E, Ivarsson MI, Gullberg B, Carlson J, Olsson H, Wirfalt E (2009) Folate intake, methylenetetrahydrofolate reductase polymorphisms, and breast cancer risk in women from the Malmo diet and cancer cohort. Cancer Epidemiol Biomark Prev 18:1101–1110

    Article  CAS  Google Scholar 

  33. Maruti SS, Ulrich CM, Jupe ER et al (2009) MTHFR C677T and postmenopausal breast cancer risk by intakes of one-carbon metabolism nutrients: a nested case–control study. Breast Cancer Res 11:R91

    Article  PubMed  Google Scholar 

  34. Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215

    Article  PubMed  CAS  Google Scholar 

  35. Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, Boers GJH, den Heijer M, Kluijtmans LAJ, van den Heuve LP, Rozen R (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 10:111–113

    Article  PubMed  CAS  Google Scholar 

  36. Cicek M, Nock N, Li L, Conti D, Casey G, Witte J (2004) Relationship between methylenetetrahydrofolate reductase C677T and A1298C genotypes and haplotypes and prostate cancer risk and aggressiveness. Cancer Epidemiol Biomark Prevent 13:1331–1336

    CAS  Google Scholar 

  37. Etienne MC, Chazal M, Laurent-Puig P et al (2002) Prognostic value of tumoral thymidylate synthase and p53 in metastatic colorectal cancer patients receiving fluorouracil-based chemotherapy: phenotypic and genotypic analyses. J Clin Oncol 20:2832–2843

    Article  PubMed  CAS  Google Scholar 

  38. Etienne MC, Ilc K, Formento JL, Laurent-Puig P, Formento P, Cheradame S, Fischel JL, Milano G (2004) Thymidylate synthase and methylenetetrahydrofolate reductase gene polymorphisms: relationships with 5-fluorouracil sensitivity. Br J Cancer 90:526–534

    Article  PubMed  CAS  Google Scholar 

  39. Matsuo K, Suzuki R, Hamajima N, Ogura M, Kagami Y, Taji H, Kondoh E, Maeda S, Asakura S, Kaba S, Nakamura S, Seto M, Morishima Y, Tajima K (2001) Association between polymorphisms of folate and methionine metabolizing enzymes and susceptibility to malignant lymphoma. Blood 15:3205–3209

    Article  Google Scholar 

  40. Heil SG et al (2001) Is mutated serine hydroxymethyltransferase (SHMT) involved in the etiology of neural tube defects? Mol Genet Metab 73:164–172

    Article  PubMed  CAS  Google Scholar 

  41. Winkelmayer WC, Eberle C, Sunder-Plassmann G, Fodinger M (2003) Effects of the glutamate carboxypeptidase II (GCP2 1561CNT) and reduced folate carrier (RFC1 80GA) allelic variants on folate and total homocysteine levels in kidney transplant patients. Kidney Int 63:2280–2285

    Article  PubMed  CAS  Google Scholar 

  42. Greendale GA, Lee NP, Arriola ER (1999) The menopause. Lancet 353:571–580

    Article  PubMed  CAS  Google Scholar 

  43. Zhai X et al (2006) Polymorphisms in thymidylate synthase gene and susceptibility to breast cancer in a Chinese population: a case–control analysis. BMC Cancer 6:138

    Article  PubMed  Google Scholar 

  44. Shrubsole MJ, Gao YT, Cai Q, Shu XO, Dai Q, Hébert JR, Jin F, Zheng W (2004) MTHFR polymorphisms, dietary folate intake, and breast cancer risk: results from the Shanghai Breast Cancer Study. Cancer Epidemiol Biomark Prev 13:190–196

    Article  CAS  Google Scholar 

  45. Lewis SJ, Harbord RM, Harris R, Smith GD (2006) Meta-analyses of observational and genetic association studies of folate intakes or levels and breast cancer risk. J Natl Cancer Inst 98:1607–1622

    Article  PubMed  CAS  Google Scholar 

  46. Grieu F, Powell B, Beilby J, Iacopetta B (2004) Methylenetetrahydrofolate reductase and thymidylate synthase polymorphisms are not associated with breast cancer risk or phenotype. Anticancer Res 24:3215–3220

    PubMed  CAS  Google Scholar 

  47. Macis D, Maisonneuve P, Johansson H, Bonanni B, Botteri E, Iodice S, Santillo B, Penco S, Gucciardo G, D’Aiuto G, Rosselli Del Turco M, Amadori M, Costa A, Decensi A (2007) Methylenetetrahydrofolate reductase (MTHFR) and breast cancer risk: a nested-casecontrol study and a pooled meta-analysis. Breast Cancer Res Treat 106:263–271

    Article  PubMed  CAS  Google Scholar 

  48. Henriquez-Hernández LA, Murias-Rosales A, Hernandez Gonzalez A, Cabrera De Leon A, Diaz-Chico BN, Mori De Santiago M, Fernandez Perez L (2009) Gene polymorphisms in TYMS, MTHFR, p53 and MDR1 as risk factors for breast cancer: a case-control study. Oncol Rep 22:1425–1433

  49. Mohammad NS, Yedluri R, Addepalli P, Gottumukkala SR, Digumarti RR, Kutala VK (2011) Aberrations in one-carbon metabolism induce oxidative DNA damage in sporadic breast cancer. Mol Cell Biochem 349:159–167

    Article  PubMed  CAS  Google Scholar 

  50. Lu M, Wang F, Qiu J (2010) Methionine synthase A2756G polymorphism and breast cancer risk: a meta-analysis involving 18,953 subjects. Breast Cancer Res Treat 123:213–217

    Article  PubMed  CAS  Google Scholar 

  51. Lima CS, Ortega MM, Ozelo MC, Araujo RC, De Souza CA, Lorand-Metze I, Annichino-Bizzacchi JM, Costa FF (2008) Polymorphisms of methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTR), methionine synthase reductase (MTRR), and thymidylate synthase (TYMS) in multiple myeloma risk. Leuk Res 32:401–405

    Article  PubMed  CAS  Google Scholar 

  52. Arruda VR, Grignolli CE, Goncalves MS, Soares MC, Menezes R, Saad STO, Costa FF (1998) Prevalence of homozygosity for the deleted alleles of glutathione S-transferase mu (GSTMl) and theta (GSTTl) among distinct ethnic groups from Brazil: relevance to environmental carcinogenesis? Clin Genet 54:210–214

    PubMed  CAS  Google Scholar 

  53. Qi X, Ma X, Yang X, Fan L, Zhang Y, Zhang F, Chen L, Zhou Y, Jiang J (2010) Methylenetetrahydrofolate reductase polymorphisms and breast cancer risk: a meta-analysis from 41 studies with 16,480 cases and 22,388 controls. Breast Cancer Res Treat 123:499–506

    Article  PubMed  CAS  Google Scholar 

  54. Yates Z, Lucock M (2005) G80A reduced folate carrier SNP modulates cellular uptake of folate and affords protection against thrombosis via a non homocysteine related mechanism. Life Sci 77:2735–2742

    Article  PubMed  CAS  Google Scholar 

  55. Chango A, Emery-Fillon N, de Courcy GP, Lambert D, Pfister M, Rosenblatt DS, Nicolas JP (2000) A polymorphism (80G-A) in the reduced folate carrier gene and its associations with folate status and homocysteinemia. Mol Genet Metab 70:310–315

    Article  PubMed  CAS  Google Scholar 

  56. Kim YI (2006) Does a high folate intake increase the risk of breast cancer? Nutr Rev 64:468–475

    Article  PubMed  Google Scholar 

  57. Lin J, Lee IM, Cook NR, Selhub J, Manson JE, Buring JE, Zhang SM (2008) Plasma folate, vitamin B-6, vitamin B-12, and risk of breast cancer in women. Am J Clin Nutr 87:734–743

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study is a support from CNPq, Rede Nordeste de Biotecnologia (RENORBIO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita de Cássia Carvalho Barbosa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carvalho Barbosa, R.d.C., Menezes, D.C., Freire, T.F.V. et al. Associations of polymorphisms of folate cycle enzymes and risk of breast cancer in a Brazilian population are age dependent. Mol Biol Rep 39, 4899–4907 (2012). https://doi.org/10.1007/s11033-011-1285-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-1285-1

Keywords

Navigation