Skip to main content

Advertisement

Log in

Effect of Candida albicans dsDNA in Gastrointestinal Candida Infection

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Neonates are highly sensitive to infections because they are biased to develop Th2 immune responses. When exposed to certain agents, such as DNA vaccines or CpG DNA motifs, neonates are capable to mount adult-like Th1 protective responses. This study investigates the capacity of Candida albicans (C. albicans) dsDNA to induce host resistance in newborn mice against gastrointestinal C. albicans infection. The protective properties of dsDNA are related to an increased number of spleen CD4+ T cells secreting IFN-γ. In infected DNA-treated mice, an enhanced production of IFN-γ by Peyer’s patch cells was observed together with reduced colonization and histopathological changes in the stomach. Our results indicated that C. albicans dsDNA administration in neonates elicited the protective immune response against gastrointestinal Candida infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Albertson GD, Niimi M, Cannon RD, Jenkinson HF. Multiple efflux mechanisms are involved in Candida albicans fluconazole resistance. Antimicrob Agents Chemother. 1996;40:2835–41.

    PubMed  CAS  Google Scholar 

  2. Arancibia SA, Beltran CJ, Aguirre IM, Silva P, Peralta AL, Malinarich F, et al. Toll-like receptors are key participants in innate immune responses. Biol Res. 2007;40:97–112.

    Article  PubMed  CAS  Google Scholar 

  3. Elkins KL, Rhinehart-Jones TR, Stibitz S, Conover JS, Klinman DM. Bacterial DNA containing CpG motifs stimulates lymphocyte-dependent protection of mice against lethal infection with intracellular bacteria. J Immunol. 1999;162:2291–8.

    PubMed  CAS  Google Scholar 

  4. He B, Qiao X, Cerutti A. CpG DNA induces IgG class switch DNA recombination by activating human B cells through an innate pathway that requires TLR9 and cooperates with IL-10. J Immunol. 2004;173:4479–91.

    PubMed  CAS  Google Scholar 

  5. Sun S, Beard C, Jaenisch R, Jones P, Sprent J. Mitogenicity of DNA from different organisms for murine B cells. J Immunol. 1997;159:3119–25.

    PubMed  CAS  Google Scholar 

  6. Rupp S. Interactions of the fungal pathogen Candida albicans with the host. Future Microbiol. 2007;2:141–51. doi:10.2217/17460913.2.2.141.

    Article  PubMed  CAS  Google Scholar 

  7. Kellermann SA, McEvoy LM. The Peyer’s patch microenvironment suppresses T cell responses to chemokines and other stimuli. J Immunol. 2001;167:682–90.

    PubMed  CAS  Google Scholar 

  8. Nagata S, McKenzie C, Pender SL, Bajaj-Elliott M, Fairclough PD, Walker-Smith JA, et al. Human Peyer’s patch T cells are sensitized to dietary antigen and display a Th cell type 1 cytokine profile. J Immunol. 2000;165:5315–21.

    PubMed  CAS  Google Scholar 

  9. Yoshida T, Hachimura S, Ishimori M, Kinugasa F, Ise W, Totsuka M, et al. Antigen presentation by Peyer’s patch cells can induce both Th1- and Th2-type responses depending on antigen dosage, but a different cytokine response pattern from that of spleen cells. Biosci Biotechnol Biochem. 2002;66:963–9. doi:10.1271/bbb.66.963.

    Article  PubMed  CAS  Google Scholar 

  10. Bistoni F, Cenci E, Mencacci A, Schiaffella E, Mosci P, Puccetti P, et al. Mucosal and systemic T helper cell function after intragastric colonization of adult mice with Candida albicans. J Infect Dis. 1993;168:1449–57.

    PubMed  CAS  Google Scholar 

  11. Dimitrova P, Yordanov M, Danova S, Ivanovska N. Enhanced resistance against systemic Candida albicans infection in mice treated with C. albicans DNA. FEMS Immunol Med Microbiol. 2008;53:231–6. doi:10.1111/j.1574-695X.2008.00421.x.

    Article  PubMed  CAS  Google Scholar 

  12. Yordanov M, Dimitrova P, Danova S, Ivanovska N. Candida albicans double-stranded DNA can participate in the host defense against disseminated candidiasis. Microbes Infect. 2005;7:178–86. doi:10.1016/j.micinf.2004.10.011.

    Article  PubMed  CAS  Google Scholar 

  13. Pfaller MA. Nosocomial candidiasis: emerging species, reservoirs, and modes of transmission. Clin Infect Dis. 1996;22:S89–94.

    PubMed  Google Scholar 

  14. Adkins B, Bu Y, Cepero E, Perez R. Exclusive Th2 primary effector function in spleens but mixed Th1/Th2 function in lymph nodes of murine neonates. J Immunol. 2000;164:2347–53.

    PubMed  CAS  Google Scholar 

  15. Magram J, Sfarra J, Connaughton S, Faherty D, Warrier R, Carvajal D, et al. IL-12-deficient mice are defective but not devoid of type 1 cytokine responses. Ann N Y Acad Sci. 1996;795:60–70. doi:10.1111/j.1749-6632.1996.tb52655.x.

    Article  PubMed  CAS  Google Scholar 

  16. Romani L, Mencacci A, Cenci E, Spaccapelo R, Del Sero G, Nicoletti I, et al. Neutrophil production of IL-12 and IL-10 in candidiasis and efficacy of IL-12 therapy in neutropenic mice. J Immunol. 1997;158:5349–56.

    PubMed  CAS  Google Scholar 

  17. Bot A, Casares S, Bot S, von Boehmer H, Bona C. Cellular mechanisms involved in protection against influenza virus infection in transgenic mice expressing a TCR receptor specific for class II hemagglutinin peptide in CD4+ and CD8+ T cells. J Immunol. 1998;160:4500–7.

    PubMed  CAS  Google Scholar 

  18. Ito S, Ishii KJ, Gursel M, Shirotra H, Ihata A, Klinman DM. CpG oligodeoxynucleotides enhance neonatal resistance to Listeria infection. J Immunol. 2005;174:777–82.

    PubMed  CAS  Google Scholar 

  19. Romani L, Cenci E, Mencacci A, Spaccapelo R, Grohmann U, Puccetti P, et al. Gamma interferon modifies CD4+ subset expression in murine candidiasis. Infect Immun. 1992;60:4950–2.

    PubMed  CAS  Google Scholar 

  20. Cenci E, Romani L, Vecchiarelli A, Puccetti P, Bistoni F. T cell subsets and IFN-gamma production in resistance to systemic candidosis in immunized mice. J Immunol. 1990;144:4333–9.

    PubMed  CAS  Google Scholar 

  21. Ashman RB, Farah CS, Wanasaengsakul S, Hu Y, Pang G, Clancy RL. Innate versus adaptive immunity in Candida albicans infection. Immunol Cell Biol. 2004;82:196–204. doi:10.1046/j.0818-9641.2004.01217.x.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by a project Actions Concertees Interpasteuriennes (ACIP) No A/7/2005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petya Dimitrova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Remichkova, M., Danova, S., Tucureanu, C. et al. Effect of Candida albicans dsDNA in Gastrointestinal Candida Infection. Mycopathologia 167, 333–340 (2009). https://doi.org/10.1007/s11046-009-9185-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-009-9185-9

Keywords

Navigation