Skip to main content
Log in

Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Oat (Avena sativa) biomass was studied as an alternative to recover Au(III) ions from aqueous solutions and for its capacity to reduce Au(III) to Au(0) forming Au nanoparticles. To study the binding trend of Au(III) to oat and the possible formation of Au nanoparticles, the biomass and a solution of Au(III) were reacted for a period of 1 h at pH values ranging from 2 to 6. The results demonstrated that Au(III) ions were bound to oat biomass in a pH-dependent manner, with the highest adsorption (about 80%) at pH 3. HRTEM studies showed that oat biomass reacted with Au(III) ions formed Au nanoparticles of fcc tetrahedral, decahedral, hexagonal, icosahedral multitwinned, irregular, and rod shape. To our knowledge, this is the second report about the production of nanorods as a product of the reaction of a Au(III) solution with a biological material. These studies also showed that the pH of the reaction influenced the nanoparticle size. The smaller nanoparticles and the higher occurrence of these were observed at pH values of 3 and 4, whereas the larger nanoparticles were observed at pH 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Armendariz V., M. Jose-Yacaman, A. Duarte-Moller, J.R. peralta-Videa, H. Troiani, I. Herrera & J.L. Gardea-Torresdey, 2004. HRTEM characterization of gold nanoparticles produced by wheat biomass. Rev. Mex. Fis. (in press).

  • Brust M., D. Bethell, C.J. Kiely & D.J. Schiffrin, 1998. Selfassembled gold nanoparticle thin films with nonmetallic optical and electronic properties. Langmuir 14, 5425–5429.

    Google Scholar 

  • Gardea-Torresdey J.L., K.J. Tiemann, G. Gamez, K. Dokken, S. Tehuacamanero & M. Jose-Yacaman, 1999. Gold nanoparticles obtained by bio-precipitation from gold(III) solutions. J. Nanopart. Res. 1, 397–404.

    Google Scholar 

  • Gardea-Torresdey J.L., J.G. Parsons, E. Gomez, J.R. Peralta-Videa, H.E. Troiani, P. Santiago & M. Jose Yacaman, 2002a. Formation of Au nanoparticle inside live alfalfa plants. Nano Lett. 2, 397–401.

    Google Scholar 

  • Gardea-Torresdey J.L., K.J. Tiemann, J.G. Parsons, G. Gamez & M. Jose Yaccaman, 2002b. Characterization of trace level Au(III) binding to alfalfa biomass. Adv. Environ. Res. 6, 313–323.

    Google Scholar 

  • Gardea-Torresdey J.L., E. Gomez, J.R. Peralta-Videa, J.G. Parsons, H. Troiani & M. Jose-Yacaman, 2003. Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles. Langumir. 4, 1357–1361.

    Google Scholar 

  • Goia D.V. & E. Matijevic, 1999. Tailoring the particle size of monodispersed colloidal gold. Colloids Surf. A. 146, 139–152.

    Google Scholar 

  • Greene B., M. Hosea, R. McPherson, M. Henzi, M.D. Alexander & D.W. Darnall, 1986. Interaction of gold(I) and gold(III) complexes with algal biomass. Environ. Sci. Technol. 20, 627–632.

    Google Scholar 

  • Hosea M.,B. Greene, R. McPherson, M. Henzl, M.D. Alexander & D.W. Darnall, 1986. Accumulation of elemental gold on the alga chlorella vulgaris. Inorg. Chem. Acta 123, 161–165.

    Google Scholar 

  • Kohler J.M., A. Csaki, J. Reichert, R. Moller, W. Straube & W. Fritzche, 2001. Selective labeling of oligonucleotide monolayers by metallic nanobeads for fast optical readout of DNA-chips. Sensor Actuators Chem B 76, 166–172.

    Google Scholar 

  • Kuyucak N. & B. Volesky, 1989. Accumulation of gold by algal biosorbent. Biorecovery 1, 189–204.

    Google Scholar 

  • Lopez M.L., J.L. Gardea-Torresdey, J.R. Peralta-Videa, G. de la Rosa, V. Armendariz, I. Herrera & H. Troiani, 2004. Gold binding by native and chemically modified hop biomasses. Bioinorg. Chem. Appl. (accepted for publication).

  • Mafune F., J. Kohono, Y. Takeda & T. Kondow, 2002. Full physical preparation of size-selected gold nanoparticles in solutions: Laser ablation and laser induced size control. J. Phys. Chem. B 106, 7575–7577.

    Google Scholar 

  • Magnusson M.H., K. Deppert, J. Malm, J. Bovin & L. Samuelson, 1999. Size-selected gold nanoparticles by aerosol technology. Nanostruct. Mater. 12, 45–48.

    Google Scholar 

  • Martin C.R. & D.T. Mitchell, 1998. Nanomaterials on analytical chemistry. Anal. Chem. 9, 322A–327A.

    Google Scholar 

  • McConnell W.P, J.P. Novak, L.C. Brousseau III, R.R. Fuiere, R.C. Tenent & D.L Feldheim, 2000. Electronic and optical properties of chemically modified nanoparticles and molecularly bridged nanoparticle arrays. J. Phys. Chem. B 104, 8925–8930.

    Google Scholar 

  • Mukherjee P., A. Ahmad, D, Mandal, S. Senapati, S.R. Sainkar, S. Mohammad, I. Khan, R. Ramani, R. Parischa, P.V. Ajayakumar, M. Alam, M. Sastry & R. Kumar, 2001. Bioreduction of AuCl4 ) ions by fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew. Chem. Int. Ed. 40, 3585–3588.

    Google Scholar 

  • Mukherjee P., S. Senapati, D. Mandal, A. Ahmad, M.I. Khan, R. Kumar & M. Sastry, 2002. Extracellular synthesis of gold nanoparticles by using Fusarium oxysporum. Chem. Biochem. 5, 461–463.

    Google Scholar 

  • Okitsu K., A. Yue, S. Tanabe, H. Matsumoto & Y. Yobiko, 2001. Formation of colloidal nanoparticles in a ultrasonic field: control of rate of gold(III) reduction and size formed nanoparticles. Langmuir 17, 7717–7720.

    Google Scholar 

  • Sau T.K., Pal, A., Jana, N.R., Wang, Z.L. & T. Pal, 2001. Size controlled synthesis of gold nanoparticles using photochemically prepared seed particles. J. Nanopart. Res. 3, 257–261.

    Google Scholar 

  • Tanaka K., 1999. Nanotechnology towards the 21st century. Thin Solid Films 341, 120–125.

    Google Scholar 

  • Tolles W.M., 1996. Nanoscience and nanotechnology in Europe. Nanotechnology 7, 59–105.

    Google Scholar 

  • Troiani H.E., A. Camacho-Bragado, V. Armendariz, J.L. Gardea-Torresday & M. Jose Yacaman, 2003. Synthesis of carbon onions by gold nanoparticles and electron irradiation. Chem. Mater. 15, 1029–1031.

    Google Scholar 

  • Turkevich J.,1985a. Colloidal gold part I: Historical and preparative aspects, morphology and properties. Gold Bull. 18, 86–91.

    Google Scholar 

  • Turkevich J.,1985b. Colloidal gold part II: Color, coagulation, adhesion, alloying and catalytic properties. Gold Bull. 18, 125–131.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armendariz, V., Herrera, I., peralta-videa, J.R. et al. Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology. Journal of Nanoparticle Research 6, 377–382 (2004). https://doi.org/10.1007/s11051-004-0741-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-004-0741-4

Navigation