Skip to main content
Log in

Comparative in vitro cytotoxicity assessment of some manufacturednanoparticulate materials characterized by transmissionelectron microscopy

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A range of manufactured nanoparticulate materials, including Ag, TiO2, Fe2O3, Al2O3, ZrO2, Si3N4, and a range of carbonaceous nanoparticulate materials: single-wall and multi-wall carbon nanotube aggregates and aggregated nanoparticles of black carbon, as well as commercial (mineral grade) chrysotile asbestos nanotube aggregates, have been rigorously characterized by transmission electron microscopy. These nanoparticulate materials ranged in primary particle sizes from roughly 3 to 150 nm (except for the nanotube materials with lengths in excess of 15 μm). Aggregate sizes ranged from 25 nm to 20 μm. Comparative cytotoxicological assessment of these nanomaterials was performed utilizing a murine (lung) macrophage cell line. Considering the chrysotile asbestos to be a positive control, and assigning it a relative cytotoxicity index of unity (1.0), relative cytotoxicity indexes were observed as follows at concentrations of 5 μg/ml: 1.6 and ∼ 0.4 for Ag and TiO2, respectively; 0.7–0.9 for the Fe2O3, Al2O3 and ZrO2, 0.4 for the Si3N4, 0.8 for the black carbon, and 0.9 to 1.1 for the carbon nanotube aggregate samples. Observations of a cytotoxic response, nearly identical to that for chrysotile asbestos, for multi-wall carbon nanotube aggregates which very closely resemble anthropogenic multi-wall carbon nanotubes in the environment, raise some concern for potential health effects, especially for long-term exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J.W. Arbogast P. Darmanyan C.S. Foote Y. Rubin F.N. Diederich M.M. Alvarez S.J. Anz R.L. Whetten (1991) J. Phys. Chem. 95 11–12 Occurrence Handle10.1021/j100154a006

    Article  Google Scholar 

  • J.D. Bachmann (1979) J. Air Pollut. Control Assoc. 29 610–618

    Google Scholar 

  • J.J. Bang L.E. Murr (2002) JOM 54 IssueID12 28–30

    Google Scholar 

  • J.J. Bang A.E. Trillo L.E. Murr (2003) J. Air Waste Managt. Assoc. 53 227–236

    Google Scholar 

  • G. Brumfiel (2003) Nature 424 246–248 Occurrence Handle10.1038/424246a Occurrence Handle12867950

    Article  PubMed  Google Scholar 

  • R. Churg M. Brauer S. Vedal B. Stevens (1999) J. Environ. Med. 1 IssueID1 39–147 Occurrence Handle10.1002/(SICI)1099-1301(199901/03)1:1<39::AID-JEM6>3.3.CO;2-X

    Article  Google Scholar 

  • Dagani, R., 2003. Chem. Eng. News 81 (17), 30

    Google Scholar 

  • G. D’Amato (2000) Clin. Exp. Allergy 30 628–636 Occurrence Handle10.1046/j.1365-2222.2000.00798.x Occurrence Handle10792353

    Article  PubMed  Google Scholar 

  • K. Donaldson P.J.A. Borm (1998) Ann. Occup. Hyg. 42 287–296 Occurrence Handle10.1016/S0003-4878(98)00044-1 Occurrence Handle9729916

    Article  PubMed  Google Scholar 

  • K. Donaldson X.Y. Li W. MacNee (1998) J. Aerosol Sci. 29 553–560 Occurrence Handle10.1016/S0021-8502(97)00464-3

    Article  Google Scholar 

  • K.L. Dreher (2004) Toxicol. Sci. 77 3–5 Occurrence Handle10.1093/toxsci/kfh041 Occurrence Handle14756123

    Article  PubMed  Google Scholar 

  • E.V. Esquivel L.E. Murr (2004) Mater. Character. 52 15–25 Occurrence Handle10.1016/j.matchar.2004.02.005

    Article  Google Scholar 

  • J. Ferin G. Oberdörster D.R. Penney (1992) Am. J. Respir. Cell. Mol. Biol. 6 535–542

    Google Scholar 

  • Green Peace Report, 2003. Future Technologies, Today’s Choices, Green Peace Environmental Trust, London, July

  • K. Hansen B.T. Mossman (1987) Cancer Res. 47 1681–1686 Occurrence Handle3028612

    PubMed  Google Scholar 

  • Heinrich U., L. Peters, O. Creutzenberg, C. Dasenbrock & H.G. Hopmann, 1994. Toxic. Carcinog. Eff. Solid Part. Respir. Tract. 433–439

  • U. Heinrich R. Fuhst S. Rittinghausen O. Cruetzenberg B. Bellmann W. Koch K. Levson (1995) Inhal. Toxicol. 7 533–556

    Google Scholar 

  • Joseph G., 2002. Industrial Hygiene Air Monitoring Report. Dupont Co. Internal Report, E. I. Dupont Co., Delaware, October

  • K.A. Katrinak P. Rezz P.R. Perkes P.R. Buseck (1993) Environ. Sci. Tech. 27 IssueID3 539–547 Occurrence Handle10.1021/es00040a013

    Article  Google Scholar 

  • Krewski D., R. Burnett, M.S. Goldberg, K. Hoover, J. Siemiatycki, M. Jerrett, M. Abramowicz, W. White & 22 others. 2000. Reanalysis of the Harvard Six Cities Study and the American Cancer Society Study of Particulate Air Pollution and Mortality: Investigators Report, Part I: Replication and Validation; Part II: Sensitivity Analysis, Health Effects Institute, Boston, MA

  • K.P. Kuhn I.F. Chaberny K. Massholder M. Stickler V.W. Benz H-G. Sonntag L. Erdinger (2003) Chemosphere 53 71–77 Occurrence Handle10.1016/S0045-6535(03)00362-X Occurrence Handle12892668

    Article  PubMed  Google Scholar 

  • C-W. Lam J.T. James R. McCluskey R.L. Hunter (2004) Toxicol. Sci. 77 IssueID1 126–134 Occurrence Handle10.1093/toxsci/kfg243 Occurrence Handle14514958

    Article  PubMed  Google Scholar 

  • K.P. Lee J.H. Trochimowicz C.F. Reinhardt (1985) Toxicol. Appl. Pharmacol. 79 179–192 Occurrence Handle10.1016/0041-008X(85)90339-4 Occurrence Handle4002222

    Article  PubMed  Google Scholar 

  • X.Y. Li P.S. Gilmour K. Donaldson W. MacNee (1996) Thorax 51 1216–1222 Occurrence Handle8994518

    PubMed  Google Scholar 

  • M. Lippmann (1986) Respiratory tract deposition and clearance of aerosols S.D. Lee T. Schneider L.D. Grant P.J. Verkerk (Eds) Aersols Lewis Publishers Chelsea, MI 43–57

    Google Scholar 

  • M. Lippmann (1994) Ann. Occup. Hyg. 38 IssueID4 459–467 Occurrence Handle7978967

    PubMed  Google Scholar 

  • C.B. Manning V. Vallyathan B.T. Mossman (2002) Int. Immunopharmacol. 2 191–200 Occurrence Handle10.1016/S1567-5769(01)00172-2 Occurrence Handle11811924

    Article  PubMed  Google Scholar 

  • J.L. Mauderly (2001) Toxicol. Sci. 62 IssueID1 6–12 Occurrence Handle10.1093/toxsci/62.1.6 Occurrence Handle11399787

    Article  PubMed  Google Scholar 

  • F.J. Miller D.E. Gardner J.A. Graham P.E. Lee W.E. Wilson J.D. Bachmann (1979) J. Air Pollut. Control Assoc. 29 610–618

    Google Scholar 

  • S. Momarca R. Crebelli D. Feretti A. Zanardini S. Fuselli L. Fillini (1997) Sci. Total Environ. 205 IssueID2–3 137–144 Occurrence Handle10.1016/S0048-9697(97)00194-0 Occurrence Handle9372626

    Article  PubMed  Google Scholar 

  • L.E. Murr (1991) Electron and Ion Microscopy and Microanalysis: Principles and Applications EditionNumber2 Marcel Dekker, Inc New York

    Google Scholar 

  • L.E. Murr J.J. Bang D.A. Lopez P.A. Guerrero E.V. Esquivel A.R. Choudhuri M. Subramanya M. Morandi A. Holian (2004a) J. Mater. Sci. Lett. 39 2199–2204

    Google Scholar 

  • L.E. Murr J.J. Bang E.V. Esquivel P.A. Guerrero D.A. Lopez (2004b) J. Nanoparticle Res. 6 241–251 Occurrence Handle10.1023/B:NANO.0000034651.91325.40

    Article  Google Scholar 

  • L.E. Murr K.F. Soto E.V. Esquivel J.J. Bang P.A. Guerrero D.A. Lopez D.A. Ramirez (2004c) JOM 56 IssueID6 28–31

    Google Scholar 

  • L.E. Murr K.F. Soto (2004) J. Mater. Sci. Lett. 39 4941–4947

    Google Scholar 

  • Murr L.E., K.M. Garza, K.F. Soto, A. Carrasco, T.G. Powell, D.A. Ramirez, P.A. Guerrero, D.A. Lopez & J. Venzor, 2005. Int. J. Environ. Res. Public Health 2(1), 31–42

    Google Scholar 

  • K.J. Nikula M.B. Snipes E.B. Barr W.C. Griffith (1995) Fundam. Appl. Toxicol. 25 80–89 Occurrence Handle10.1006/faat.1995.1042 Occurrence Handle7541380

    Article  PubMed  Google Scholar 

  • K.J. Nikula V. Vallyathan F.H.Y. Green F.E. Hahn (2001) Environ. Health Persp. 109 IssueID4 311–318

    Google Scholar 

  • G. Oberdörster J. Ferin B.E. Lehnert (1994) Environ. Health Perspective 102 IssueIDSuppl. 5 173–179

    Google Scholar 

  • G. Oberdörster J.N. Finkelstein C. Johnston R. Gelein C. Cox R. Baggs A.C. Elder (2000) Acute Pulmonary Effects of Ultrafine Particles in Rats and Mice Health Effects Institute Cambridge, MA

    Google Scholar 

  • G. Oberdörster (2001) Int. Arch. Occup. Environ. Health 74 1–8 Occurrence Handle10.1007/s004200000185 Occurrence Handle11196075

    Article  PubMed  Google Scholar 

  • E. Oberdörster (2004) Environ. Res. Persp. 112 1058–1062

    Google Scholar 

  • J. Pourahmad P.M. O’Brien (2000) Toxicology 143 263–273 Occurrence Handle10.1016/S0300-483X(99)00178-X Occurrence Handle10755712

    Article  PubMed  Google Scholar 

  • L.C. Renwick K. Donaldson A. Clouter (2001) Toxicol. Appl. Pharmacol. 172 IssueID2 119–127 Occurrence Handle10.1006/taap.2001.9128 Occurrence Handle11298498

    Article  PubMed  Google Scholar 

  • S. Salvi S.T. Holgate (1999) Clin. Exper. Allergy 29 1187–1194 Occurrence Handle10.1046/j.1365-2222.1999.00576.x

    Article  Google Scholar 

  • R.F. Service (2004) ArticleTitleBuckyballs Bad for Fish Science 304 IssueIDMarch 30 330–331

    Google Scholar 

  • G. Skillas S. Kunzel H. Burtscher U. Baltensperger K. Siegmann (1998) J. Aerosol Sci. 2 IssueID4 411–419 Occurrence Handle10.1016/S0021-8502(97)00448-5

    Article  Google Scholar 

  • Soto K.F., L.E. Murr & P.A. Guerrero, 2004. In: Anderson I.M., Price R., Hall E., Clark E. and S. McKernan eds. Characterization and Comparison of Carbon and Asbestos Nanotubes. Proc. Microscopy and Microanalysis – 2004, Cambridge University Press, England, pp. (CD) 410–411

  • M.F. Stanton C. Wrench (1972) J. Nat. Cancer Inst. 48 797–821 Occurrence Handle5058974

    PubMed  Google Scholar 

  • G. Sykes (1958) Disinfection and Sterilization D. Van Nostrand Co., Inc Princeton, NJ

    Google Scholar 

  • A.A. Loosdrecht Particlevan de R.H.J. Beelen G.J. Ossenkoppele M.G. Broekhoven M.M.A.C. Langenhujsen (1994) J. Immunol. Meth. 174 311–320 Occurrence Handle10.1016/0022-1759(94)90034-5

    Article  Google Scholar 

  • Warheit D.B., 2004. Nanoparticles: Health Impacts? Mater. Today, February, 32–35

  • D.B. Warheit B.R. Lawrence K.L. Reed D.H. Roach G.A.M. Reynolds T.R. Webb (2004) Toxicol. Sci. 77 IssueID1 117–125 Occurrence Handle10.1093/toxsci/kfg228 Occurrence Handle14514968

    Article  PubMed  Google Scholar 

  • H. Yoshida T. Yoshizawa F. Shibasaki S. Shoji I. Kanazawa (2002) Neurobiol. Dis. 10 88–99 Occurrence Handle10.1006/nbdi.2002.0502 Occurrence Handle12127147

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. E. Murr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soto, K.F., Carrasco, A., Powell, T.G. et al. Comparative in vitro cytotoxicity assessment of some manufacturednanoparticulate materials characterized by transmissionelectron microscopy. J Nanopart Res 7, 145–169 (2005). https://doi.org/10.1007/s11051-005-3473-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-005-3473-1

Keywords

Navigation