Skip to main content
Log in

Biosynthesis of nanoparticles: technological concepts and future applications

  • Technology and Applications
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanotechnology involves the production, manipulation and use of materials ranging in size from less than a micron to that of individual atoms. Although nanomaterials may be synthesized using chemical approaches, it is now possible to include the use of biological materials. In this review, we critically assess the role of microorganisms and plants in the synthesis of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus Fusarium oxysporum. J Am Chem Soc 124:12108–12109

    Article  CAS  Google Scholar 

  • Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerf 28:313–318

    Article  CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastry M (2003a) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14:824–828

    Article  CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2003b) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19: 3550–3553

    Article  CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2005) Extra-/intracellular, biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. J Biomed Nanotechnol 1:47–53

    Article  CAS  Google Scholar 

  • Ankamwar B, Damle C, Absar A, Mural S (2005a) Biosynthesis of gold and silver nanoparticles using Emblica Officinalis fruit extract, their phase transfer and transmetallation in an organic solution. J Nanosci Nanotechnol 10:1665–1671

    Article  Google Scholar 

  • Ankamwar B, Chaudhary M, Mural S (2005b) Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor sensing. Synth React Inorg Metal-Org Nanometal Chem 35:19–26

    Article  CAS  Google Scholar 

  • Armendariz V, Herrera I, Peralta-Videa JR, Jose-Yacaman M, Troiani H, Santiago P, Gardea-Torresdey JL (2004) Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology. J Nanoparticle Res 6:377–382

    Article  CAS  Google Scholar 

  • Austin RH, Tegenfeldt JO, Cao H, Chou SY, Cox EC (2002) Scanning the controls: genomics and nanotechnology. IEEE Transac Nanotechnol 1:12–18

    Article  Google Scholar 

  • Bansal V, Rautaray D, Ahmad A, Sastry M (2004) Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Materials Chem 14:3303–3305

    Article  CAS  Google Scholar 

  • Bansal V, Rautaray D, Bharde A, Ahire K, Sanyal A, Ahmad A, Sastry M (2005) Fungus-mediated biosynthesis of silica and titania particles. J Mater Chem 15:2583–2589

    Article  CAS  Google Scholar 

  • Bansal V, Poddar P, Ahmad A, Sastry M (2006) Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles. J Am Chem Soc 128:11958–11963

    Article  CAS  Google Scholar 

  • Bayer ME, Bayer MH (1991) Lanthanide accumulation in the periplasmic space of Escherichia coli B. J Bacteriol 173:141–149

    CAS  Google Scholar 

  • Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B: Biointerf 47:160–164

    Article  CAS  Google Scholar 

  • Bharde A, Rautaray D, Bansal V, Ahmad A, Sarkar I, Yusuf SM, Sanyal M, Sastry M (2006) Extracellular biosynthesis of magnetite using fungi. Small 2:135–141

    Article  CAS  Google Scholar 

  • Bhattacharya D, Rajinder G (2005) Nanotechnology and potential of microorganisms. Crit Rev Biotechnol 25:199–204

    Article  CAS  Google Scholar 

  • Chandran SP, ChaudharyM, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22:577–583

    Article  CAS  Google Scholar 

  • Chandrasekharan N, Kamat PV (2000) Improving the photoelectrochemical performance of nanostructured TiO2 films by adsorption of gold nanoparticles. J Phys Chem B 104:10851–10857

    Article  CAS  Google Scholar 

  • Chen AA, Derfus AM, Khetani SR, Bhatia SN (2005) Quantum dots to monitor RNAi delivery and improve gene silencing. Nucleic Acids Res 33:e190

    Article  Google Scholar 

  • Chiu YL, Ali A, Chu CY, Cao H, Rana TM (2004) Visualizing a correlation between siRNA localization, cellular uptake, and RNAi in living cells. Chem Biol 11:1165–1175

    Article  CAS  Google Scholar 

  • Dameron CT, Reeser RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwaldm ML, Brus LE, Winge DR (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338:596–597

    Article  CAS  Google Scholar 

  • Durán N, Marcato PD, Alves OL, De Souza GIH, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:8

    Article  Google Scholar 

  • Durán N, Marcato PD, De S, Gabriel IH, Alves OL, Esposito E (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3:203–208

    Article  Google Scholar 

  • Gardea-Torresdey JL, Tiemann KJ, Parsons JG, Gamez G, Yacaman MJ (2002) Characterization of trace level Au(III) binding to alfalfa biomass (Medicago sativa) by GFAA. Adv Environ Res 6:313–323

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, Parsons JG, Troiani H, Jose-Yacaman M (2003) Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 19:1357–1361

    Article  CAS  Google Scholar 

  • Gericke M, Pinches A (2006a) Biological synthesis of metal nanoparticles. Hydrometallurgy 83:132–140

    Article  CAS  Google Scholar 

  • Gericke M, Pinches A (2006b) Microbial production of gold nanoparticles. Gold Bull 39:22–28

    CAS  Google Scholar 

  • Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J, Chen C (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105104–105114

    Article  Google Scholar 

  • Husseiny MI, El-Aziz MA, Badr Y, Mahmoud MA (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta A: Mol Biomol Spectrosc 67:1003–1006

    Article  CAS  Google Scholar 

  • Jianrong C, Yuqing M, Nongyue H, Xiaohua W, Sijiao L (2004) Nanotechnology and biosensors. Biotechnol Adv 22:505–518

    Article  Google Scholar 

  • Joerger R, Klaus T, Olsson E, Granqvist CG (1999) Spectrally selective solar absorber coatings prepared by a biomimetic technique. Proc Soc Photo-Opt Instrum Eng 3789:2–7

    CAS  Google Scholar 

  • Joerger R, Klaus T, Granqvist CG (2000) Biologically produced silver-carbon composite materials for optically functional thin film coatings. Adv Mater 12:407–409

    Article  CAS  Google Scholar 

  • Kakizawa Y, Furukawa S, Kataoka K (2004) Block copolymer-coated calcium phosphate nanoparticles sensing intracellular environment for oligodeoxynucleotide and siRNA delivery. J Control Release 97:345–356

    Article  CAS  Google Scholar 

  • Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci USA 96:13611–13614

    Article  CAS  Google Scholar 

  • Klaus T, Joerger R, Olsson E, Granqvist CG (2001) Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends Biotechnol 19:15–20

    Article  Google Scholar 

  • Kowshik M, Deshmukh N, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002) Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol Bioeng 78:583–588

    Article  CAS  Google Scholar 

  • Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14:95–100

    Article  CAS  Google Scholar 

  • Krolikowska A, Kudelski A, Michota A, Bukowska J (2003) SERS studies on the structure of thioglycolic acid monolayers on silver and gold. Surf Sci 532:227–232

    Article  Google Scholar 

  • Kumar CV, McLendon GL (1997) Nanoencapsulation of cytochrome c and horseradish peroxidase at the galleries of α-zirconium phosphate. Chem Mater 9:863–870

    Article  CAS  Google Scholar 

  • Kumar A, Mandal S, Selvakannan PR, Parischa R, Mandale AB, Sastry M (2003) Investigation into the interaction between surface-bound alkylamines and gold nanoparticles. Langmuir 19:6277–6282

    Article  CAS  Google Scholar 

  • Kumar SA, Abyaneh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A, Khan MI (2007a) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29:439–445

    Article  CAS  Google Scholar 

  • Kumar SA, Ayoobul AA, Absar A, Khan MI (2007b) Extracellular biosynthesis of CdSe quantum dots by the fungus, Fusarium Oxysporum. J Biomed Nanotechnol 3:190–194

    Article  CAS  Google Scholar 

  • Lengke M, Southam G (2006) Bioaccumulation of gold by sulfate-reducing bacteria cultured in the presence of gold(I)-thiosulfate complex. Geochim Cosmochim Acta 70:3646–3661

    Article  CAS  Google Scholar 

  • Lengke M, Fleet ME, Southam G (2006a) Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold(I)-thiosulfate and gold(III)-chloride complexes. Langmuir 22:2780–2787

    Article  CAS  Google Scholar 

  • Lengke M, Ravel B, Fleet ME, Wanger G, Gordon RA, Southam G (2006b) Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold(III)-chloride complex. Environ Sci Technol 40:6304–6309

    Article  CAS  Google Scholar 

  • Macdonald IDG, Smith WE (1996) Orientation of cytochrome c adsorbed on a citrate-reduced silver colloid surface. Langmuir 12:706–713

    Article  CAS  Google Scholar 

  • Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69:485–492

    Article  CAS  Google Scholar 

  • Mann S (ed) (1996) Biomimetic materials chemistry. VCH Publishers, New York

  • Matsunaga T (1991) Applications of bacterial magnets. Trends Biotechnol 9:91–95

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajay PV, Alam M, Kumar R, Sastry M (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Kumar PAV, Alam M, Sastry M, Kumar R (2001a) Bioreduction of AuCl 4 ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40:3585–3588

    Article  CAS  Google Scholar 

  • Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chem Bio Chem 3:461–463

    CAS  Google Scholar 

  • Mullen MD, Wolf DC, Ferris FG, Beveridge TJ, Flemming CA, Bailey GW (1989) Bacterial absorption of heavy metals. Appl Environ Microbiol 55:3143–3149

    CAS  Google Scholar 

  • Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Crystal Growth Design 4:295–298

    Google Scholar 

  • Ortiz DF, Ruscitti T, McCue KF, Ow DM (1995) Transport of metal binding peptides by HMT-1, a fission yeast ABC type vacuolar membrane protein. J Biol Chem 270:4721–4728

    Article  CAS  Google Scholar 

  • Pennadam SS, Firman K, Alexander C, Gorecki DC (2004) Protein-polymer nano-machines. Towards synthetic control of biological processes. J Nanobiotechnol 2:8

    Article  Google Scholar 

  • Peto G, Molnar GL, Paszti Z, Geszti O, Beck A, Guczi L (2002) Electronic structure of gold nanoparticles deposited on SiOx/Si. Mater Sci Eng C 19:95–99

    Article  Google Scholar 

  • Roh Y, Lauf RJ, McMillan AD, Zhang C, Rawn CJ, Bai J, Phelps TJ (2001) Microbial synthesis and the characterization of metal-substituted magnetites. Solid State Commun 118:529–534

    Article  CAS  Google Scholar 

  • Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85:162–170

    CAS  Google Scholar 

  • Sastry M, Ahmad A, Khan MI, Kumar R (2004) Microbial nanoparticle production. In: Niemeyer CM, Mirkin CA (eds) Nanobiotechnology. Wiley-VCH, Weinheim, Germany, pp 126–135

    Chapter  Google Scholar 

  • Schabes-Retchkiman PS, Canizal G, Herrera-Becerra R, Zorrilla C, Liu HB, Ascencio JA (2006) Biosynthesis and characterization of Ti/Ni bimetallic nanoparticles. Optical Materials 29:95–99

    Article  CAS  Google Scholar 

  • Senapati S, Mandal D, Ahmad A, Khan MI, Sastry M, Kumar R (2004) Fungus mediated synthesis of silver nanoparticles: a novel biological approach. Indian J Phys 78A:101–105

    CAS  Google Scholar 

  • Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R (2005) Extracellular biosynthesis of bimetallic Au–Ag alloy nanoparticles. Small 1:517–520

    Article  CAS  Google Scholar 

  • Shankar SS, Absar A, Murali S (2003) Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog 19:1627–1631

    Article  CAS  Google Scholar 

  • Shankar SS, Ahmad A, Pasrichaa R, Sastry M (2003a) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826

    Article  CAS  Google Scholar 

  • Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using neem (Azadirachta indica), leaf broth. J Colloid Interf Sci 275:496–502

    Article  CAS  Google Scholar 

  • Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mat Lett 61:1413–1418

    Article  CAS  Google Scholar 

  • Williams P, Keshavarz-Moore E, Dunnil P (1996) Production of cadmium sulphide microcrystallites in batch cultivation by saccharomyces pombe. J Biotechnol 48:259–267

    Article  CAS  Google Scholar 

  • Yong P, Rowsen NA, Farr JPG, Harris IR, Macaskie LE (2002) Bioreduction and biocrystallization of palladium by Desulfovibrio desulfuricans NCIMB 8307. Biotechnol Bioeng 80:369–379

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Dr. P.S. Ahuja, Director, IHBT for his valuable suggestions during writing of this article. We would like to acknowledge Council for Scientific and Industrial Research (CSIR), Govt. of India, New Delhi for providing continuous financial support for our research work. The IHBT communication number of this article is 755.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudesh Kumar Yadav.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohanpuria, P., Rana, N.K. & Yadav, S.K. Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10, 507–517 (2008). https://doi.org/10.1007/s11051-007-9275-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-007-9275-x

Keywords

Navigation