Skip to main content
Log in

An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

One of the reasons for the controversy on the thermal conductivity enhancement of nanofluids is the lack of extensive data over a wide range of parameters. In the present study, a comprehensive experimental dataset is obtained for thermal conductivity of nanofluids with variation in nanoparticle material, base liquid, particle size, particle volume fraction and suspension temperature. Transient hot wire (THW) equipment as well as Temperature Oscillation equipment are developed for the measurement of thermal conductivity of liquids. The measurements show that, in general, thermal conductivity values of all the nanofluids are higher than that of the equivalent macro-particle suspensions. Metallic nanofluids are found to give higher enhancements than that of oxide nanofluids. Particle size is found to have a tremendous impact on the thermal conductivity of nanofluids with enhancement in the thermal conductivity increasing almost inversely with reduction in the particle size. Increase in temperature significantly increases the thermal conductivity of a nanofluid. It is also observed that the thermal conductivity of nanoparticle suspensions is relatively higher at lower volume fractions, thereby giving a non-linear dependence on the particle volume fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

d p :

Particle diameter (m)

k m :

Thermal conductivity of liquid medium (W/mK)

k p :

Thermal conductivity of particles (W/mK)

T :

Temperature (°C)

ε :

Particle volume fraction

References

  • Buongiorno J, Hu L-W, McKrell T, Prabhat N (2009) Report and analysis of INPBE results—thermal conductivity. International nanofluid properties benchmark exercise INPBE. http://mit.edu/nse/nanofluids/benchmark/workshop/mit.pdf

  • Chopkar M, Das PK, Manna I (2006) Synthesis and characterization of nanofluid for advanced heat transfer applications. Scripta Mater 55:549–552

    Article  CAS  Google Scholar 

  • Das SK, Putra N, Thiesen P, Roetzel W (2003) Temperature dependence of thermal conductivity enhancement for nanofluids. ASME J Heat Transf 125:567–574

    Article  CAS  Google Scholar 

  • Eastman JA, Choi SUS, Li S, Yu W, Thomson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol based nanofluids containing copper nanoparticles. Appl Phys Lett 78(6):718–720

    Article  CAS  ADS  Google Scholar 

  • Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous two component systems. Ind Eng Chem Fundam 1(3):187–191

    Article  CAS  Google Scholar 

  • Hong TK, Yang HS, Choi CJ (2005) Study of the enhanced thermal conductivity of Fe nanofluids. J Appl Phys 97:064311

    Article  ADS  Google Scholar 

  • Hwang Y, Lee JK, Lee CH, Jung YM, Cheonga SI, Lee CG, Ku BC, Jang SP (2007) Stability and thermal conductivity characteristics of nanofluids. Thermochimica Acta 455:70–74

    Article  CAS  Google Scholar 

  • Kim SH, Choi SR, Kim D (2007) Thermal conductivity of metal-oxide nanofluids: particle size dependence and effect of laser irradiation. ASME J Heat Transf 129:298–307

    Article  CAS  MathSciNet  Google Scholar 

  • Lee S, Choi SUS, Li S, Eastman JA (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf 121:280–289

    Article  CAS  Google Scholar 

  • Li CH, Peterson GP (2006) Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). J Appl Phys 99:084314

    Article  ADS  Google Scholar 

  • Li CH, Peterson GP (2007) The effect of particle size on the effective thermal conductivity of Al2O3-water nanofluids. J Appl Phys 101:044312

    Article  ADS  Google Scholar 

  • Maxwell JC (1881) A treatise on electricity and magnetism, vol 1, 2nd edn. Clarendon Press, Oxford, UK

    Google Scholar 

  • Murshed SMS, Leong KC, Yang C (2005) Enhanced thermal conductivity of TiO2–water based nanofluids. Int J Therm Sci 44:367–373

    Article  CAS  Google Scholar 

  • Murshed SMS, Leong KC, Yang C (2008) Investigations of thermal conductivity and viscosity of nanofluids. Int J Therm Sci 47:560–568

    Article  CAS  Google Scholar 

  • Patel HE, Das SK, Sundararajan T, Sreekumaran NA, George B, Pradeep T (2003) Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects. Appl Phys Lett 83(14):2931–2933

    Article  CAS  ADS  Google Scholar 

  • Putnam SA, Cahill DG, Braun PV, Ge Z, Shimmin RG (2006) Thermal conductivity of nanoparticle suspensions. J Appl Phys 99:084308

    Article  ADS  Google Scholar 

  • Venerus DC, Kabadi MS, Lee S, Perez-Luna V (2006) Study of thermal transport in nanoparticle suspensions using forced Rayleigh scattering. J Appl Phys 100:094310

    Article  ADS  Google Scholar 

  • Wang X, Xu X, Choi SUS (1999) Thermal conductivity of nanoparticle-fluid mixture. J Thermophys Heat Transf 13:474–480

    Article  CAS  Google Scholar 

  • Xie H, Wang J, Xi T, Liu Y (2001) Study on the thermal conductivity of SiC nanofluids. J Chin Ceram Soc 29(4):361–364

    CAS  Google Scholar 

  • Xie HQ, Wang JC, Xi TG, Liu Y, Ai F, Wu QR (2002) Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J Appl Phys 91:4568–4572

    Article  CAS  ADS  Google Scholar 

  • Xuan Y, Li Q (2000) Heat transfer enhancement of nano-fluids. Int J Heat Fluid Flow 21:58–64

    Article  CAS  Google Scholar 

  • Yang B, Han ZH (2006) Temperature-dependent thermal conductivity of nanorod-based nanofluids. Appl Phys Lett 89:083111

    Article  ADS  Google Scholar 

  • Zhang X, Gu H, Fujii M (2006) Experimental study on the effective thermal conductivity and thermal diffusivity of nanofluids. Int J Thermophys 27(2):569–580

    Article  Google Scholar 

  • Zhang X, Gu H, Fujii M (2007) Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Exp Therm Fluid Sci 31:593–599

    Article  CAS  Google Scholar 

  • Zhu H, Zhang C, Liu S, Tang Y, Yin Y (2006) Effects of nanoparticle clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids. Appl Phys Lett 89:023123

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the financial support for this research work from Defence Research and Development Organisation, India, and Department of Science and Technology, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarit K. Das.

Appendices

Appendix 1

See Table 1.

Table 1 Properties of materials

Appendix 2

See Table 2.

Table 2 Enhancement in the thermal conductivity value over that of a base liquid for nanofluids

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, H.E., Sundararajan, T. & Das, S.K. An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids. J Nanopart Res 12, 1015–1031 (2010). https://doi.org/10.1007/s11051-009-9658-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9658-2

Keywords

Navigation