Skip to main content
Log in

From workplace air measurement results toward estimates of exposure? Development of a strategy to assess exposure to manufactured nano-objects

  • Special focus: Environmental and human exposure to nanomaterials
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In the past few years, an increasing number of studies on workplace air measurements on manufactured nano-materials and -objects have been published. Most of the studies had a more explorative character, so a direct interpretation to workers” exposure for a given exposure situation, activity, or process is not a straight-forward process. In general, the studies use a quite similar package of devices for near real-time monitoring of particle number- and mass concentration in size ranges <100 nm up to 10 μm, and the collection of samples for off-line characterization of air samples. Various approaches for addressing background concentrations and its use to indicate the potential for exposure to nano-objects could be observed. Within the EU-sponsored NANOSH project, a harmonized approach for measurement strategy, data analysis and reporting was developed. In addition to time/activity–concentration profiles as reported by most studies, this approach enables a first step to estimate the potential for exposure to manufactured nano-objects, more quantitatively. The NANOSH data will be collated into a base, which may form the starting point for a harmonized database facilitating overall analysis in near future, to derive estimates for exposure for several exposure situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Asbach C, Fissan H, Stahlmecke B, Kulbusch TAJ, Pui DYH (2009) Conceptual limitations and extensions of lung-deposited nanoparticle surface area monitor (NSAM). J Nanopart Res 11:101–109. doi:10.1007/s11051-008-9479-8

    Article  Google Scholar 

  • Bello D, Hart AJ, Ahn K, Hallock M, Yamamoto N, Garcia EJ, Ellenbecker MJ, Wardle BL (2008) Particle exposure levels during CVD growth and subsequent handling of vertically-aligned carbon nanotube films. Carbon 266:974–981

    Article  CAS  Google Scholar 

  • Bello D, Wardie BL, Yamamoto N, Guzman deVilloria R, Garcia EJ, Hart AJ, Ahn K, Ellenbecker MJ, Hallock M (2009) Exposure to nanoscale particles and fibres during machining of hybrid advanced composites containing carbon nanotubes. J Nanopart Res 11:231–249

    Article  CAS  Google Scholar 

  • Brouwer DH, Gijsbers JHJ, Lurvink MWMN (2004) Personal exposure to ultrafine particles in the workplace: exploring sampling techniques and strategies. Ann Occup Hyg 48:439–453. doi:10.1093/annhyg/meh040

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y-H, Chao Y-C, Wu C-H, Tsai C-J, Uang S-N, Shih T-S (2008) Measurements of ultrafine particle concentrations and size distribution in an iron foundry. J Hazard Mater 158:124–130. doi:10.1016/j.jhazmat.2008.01.036

    Article  PubMed  CAS  Google Scholar 

  • Demou E, Peter P, Hellweg S (2008) Exposure to manufactured nanostructured particles in an industrial pilot plant. Ann Occup Hyg 52:695–706. doi:10.1093/annhyg/ment058

    Article  PubMed  Google Scholar 

  • Fransman W, Cherrie J, van Tongeren M, Schneider T, Tischler M, Schinkel J, Marquart H, Warren N, Kromhout H, Tielemans E (2009) Development of a mechanistic model for the Advanced REACH Tool (ART), Beta release. TNO report V 8667, Zeist, The Netherlands, pp 34–45

  • Froeschke S, Kohler S, Weber AP, Kasper G (2003) Impact fragmentation of nanoparticle agglomerates. J Aerosol Sci 34:275–287. doi:10.1016/S0021-98502(02)00185-4

    Article  CAS  Google Scholar 

  • Fujitani Y, Kobayashi T, Arashidani K, Kunugita N, Suemura K (2008) Measurement of the physical properties of aerosols in a fullerene factory for inhalation exposure assessment. J Occup Environ Hyg 5:380–389. doi:10.1080/15459620802050053

    Article  PubMed  CAS  Google Scholar 

  • Han JH, Lee EJ, Lee JH, So KP, Lee YH, Bae GN, Lee S-B, Ji JH, Cho MH, Yu IJ (2008) Monitoring multiwalled carbon nanotube exposure in carbon nanotube research facility. Inhal Toxicol 20:741–749. doi:10.11080/08958370801942238

    Article  PubMed  CAS  Google Scholar 

  • Heitbrink WA, Evans DE, Ku BK, Maynard AD, Slavin TJ, Peters TM (2009) Relationships among particle number, surface area, and respirable mass concentrations in automotive engine manufacturing. J Occup Environ Hyg 6:19–31. doi:10.1080/15459620802530096

    Article  PubMed  CAS  Google Scholar 

  • Ibaseta N (2007) Etude experimentale et modelisation de lémission d’aerosols ultrafine lors du deversement de poudres nanostructures. Thesis, Institut National Polytechniques de Toulouse, France. http://ethesis.inp-toulouse.france/archive/00000612/

  • ISO (2008) Nanotechnologies—terminology and definitions for nano-objects—nanoparticle, nanofibre and nanoplate. ISO TS 27687. International Organization for Standardization, Geneva

    Google Scholar 

  • Ku BK, Maynard AD (2005) Comparing aerosol surface-area measurements of monodisperse ultrafine silver agglomerates by mobility analysis transmission electron microscopy and diffusion charging. J Aerosol Sci 36:1108–1124

    Article  CAS  Google Scholar 

  • Kuhlbusch TAJ, Fissan H (2006) Particle characteristics in the reactor and pelletizing areas of carbon black production. J Occup Environ Hyg 3:558–567. doi:10.1080/15459620600912280

    Article  PubMed  CAS  Google Scholar 

  • Kuhlbusch TAJ, Neumann S, Fissan H (2004) Number size distribution, mass concentration, and particle composition of PM1, PM2.5, and PM10 in bag filling areas of carbon black production. J Occup Environ Hyg 1:660–671. doi:10.1080/15459620490502242

    Article  PubMed  CAS  Google Scholar 

  • Maynard AD (2002a) Estimating aerosol surface area from number and mass concentration. Ann Occup Hyg 47:123–144. doi:10.1093/annhyg/meg022

    Article  Google Scholar 

  • Maynard AD (2002b) Experimental determination of ultrafine TiO2 deagglomeration in a surrogate pulmonary surfactant: preliminary results. Ann Occup Hyg 46(Supplement 1):197–202. doi:10.1093/annhyg/mef630

    Google Scholar 

  • Maynard AD, Aitken RJ (2007) Assessing exposure to airborne nanomaterials; current abilities and future requirements. Nanotoxicology 1:26–41. doi:10.1080/17435390701314720

    Article  CAS  Google Scholar 

  • Maynard AD, Zimmer AT (2002) Evaluation of grinding aerosols in terms of alveolar dose: the significance of using mass, surface area and number metrics. Ann Occup Hyg 46(Suppl 1):315–319. doi:10.1093/annhyg/mef654

    Google Scholar 

  • Maynard AD, Baron PA, Foley M, Shvedova AA, Kisin ER, Castranova V (2004) Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material. J Toxicol Environ Health A 67:87–107. doi:10.1080/15287390490253688

    Article  PubMed  CAS  Google Scholar 

  • Methner M (2008) Effectiveness of local exhaust ventilation (LEV) in controlling engineered nanomaterial emissions during reactor cleanout operations. J Occup Environ Hyg 5:D63–D69. doi:10.1080/15459620802059393

    PubMed  Google Scholar 

  • Methner MM, Birch ME, Evan DE, Ku B-K, Hoover MD (2007) Identification and characterization of potential sources of worker exposure to carbon nanofibers during polymer composite laboratory operations. J Occup Environ Hyg 4:D125–D130. doi:10.1080/15459620701683871

    Article  PubMed  Google Scholar 

  • Money CD, Van Hemmen JJ, Vermeire TG (2007) Scientific governance and the process for exposure scenario development in REACH. J Expo Sci Environ Epidemiol 17:S34–S37. doi:10.1038/sj.jes.7500564

    Article  PubMed  CAS  Google Scholar 

  • Ono-Ogasawara M, Serita F, Takaya M (2009) Distinguishing nanomaterial particles from background airborne particulate matter for quantitative exposure assessment. J Nanopart Res. doi:10.1007/s11051-9703-1

  • Peters TM, Elzey S, Johnson R, Park H, Grassian VH, Maher T, O’Shaughnessy P (2009) Airborne monitoring to distinguish engineered nanomaterials from incidental particles for environmental health and safety. J Occup Environ Hyg 6:73–81. doi:1080/15459620802590058

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran G, Paulsen D, Watts W, Kittelson D (2005) Mass, surface area and number metrics in diesel occupational exposure assessment. J Environ Monit 2005:728–735. doi:10.1039/b503854e

    Article  CAS  Google Scholar 

  • Rothenbacher S, Messerer A, Kasper G (2008) Fragmentation and bond strength of airborne diesel soot agglomerates. Part Fibre Toxicol 5:9. doi:101186/1743-8977-5-9

    Article  PubMed  CAS  Google Scholar 

  • Seipenbusch M, Toneva P, Peukert W, Weber AP (2007) Impact fragmentation of metal nanoparticle agglomerates. Part Part Syst Charact 24:193–200. doi:10.1002/ppsc.200601089

    Article  CAS  Google Scholar 

  • Tielemans E, Schneider T, Goede H et al (2008) Conceptual model for assessment of inhalation exposure: defining modifying factors. Ann Occup Hyg 52:577–586. doi:10.1093/annhyg/mem059

    Article  PubMed  Google Scholar 

  • Tsai S-J, Ada E, Isaacs JA, Ellenbecker MJ (2008a) Airborne nanoparticle exposures associated with the manual handling of nanoalumina and nanosilver in fume hoods. J Nanopart Res. doi:10.1007/s11051-008-9459-z

  • Tsai S-J, Ashter A, Ada E, Mead JL, Barry CF, Ellenbecker MJ (2008b) Airborne nanoparticle release associated with the compounding of nanocomposites using nanoalumina as fillers. Aerosol Air Qual Res 8:160–177

    CAS  Google Scholar 

  • Yeganeh B, Kull CM, Hull MS, Marr LC (2008) Characterization of airborne particles during production of carbonaceous nanomaterials. Environ Sci Technol 42:4600–4606. doi:10.1021/es703043c

    Article  PubMed  CAS  Google Scholar 

  • Zartarian V, Bahadori T, McKone T (2005) Adoption of an official ISEA glossary. J Expo Anal Environ Epidemiol 15:1–5. doi:1053-424565/$30.00

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The NANOSH project is supported by EU-FP6 program, contract NMP4-CT-2006-032777.

Disclaimer

The opinions expressed in this article do not necessarily reflect those of the European Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derk Brouwer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brouwer, D., van Duuren-Stuurman, B., Berges, M. et al. From workplace air measurement results toward estimates of exposure? Development of a strategy to assess exposure to manufactured nano-objects. J Nanopart Res 11, 1867–1881 (2009). https://doi.org/10.1007/s11051-009-9772-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9772-1

Keywords

Navigation