Skip to main content
Log in

Size-fractionated characterization and quantification of nanoparticle release rates from a consumer spray product containing engineered nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This study describes methods developed for reliable quantification of size- and element-specific release of engineered nanoparticles (ENP) from consumer spray products. A modified glove box setup was designed to allow controlled spray experiments in a particle-minimized environment. Time dependence of the particle size distribution in a size range of 10–500 nm and ENP release rates were studied using a scanning mobility particle sizer (SMPS). In parallel, the aerosol was transferred to a size-calibrated electrostatic TEM sampler. The deposited particles were investigated using electron microscopy techniques in combination with image processing software. This approach enables the chemical and morphological characterization as well as quantification of released nanoparticles from a spray product. The differentiation of solid ENP from the released nano-sized droplets was achieved by applying a thermo-desorbing unit. After optimization, the setup was applied to investigate different spray situations using both pump and gas propellant spray dispensers for a commercially available water-based nano-silver spray. The pump spray situation showed no measurable nanoparticle release, whereas in the case of the gas spray, a significant release was observed. From the results it can be assumed that the homogeneously distributed ENP from the original dispersion grow in size and change morphology during and after the spray process but still exist as nanometer particles of size <100 nm. Furthermore, it seems that the release of ENP correlates with the generated aerosol droplet size distribution produced by the spray vessel type used. This is the first study presenting results concerning the release of ENP from spray products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agarwal JK, Sem GJ (1980) Continuous flow, single-particle-counting condensation nucleus counter. J Aerosol Sci 11(4):343–357

    Article  CAS  Google Scholar 

  • Asmi E, Sipila M, Manninen HE, Vanhanen J, Lehtipalo K, Gagna S, Neitola K, Mirme A, Mirme S, Tamm E, Uin J, Komsaare K, Attoui M, Kulmala M (2008) Results of the first air ion spectrometer calibration and intercomparison workshop. Atmos Chem Phys Discuss 8(5):17257–17295

    Article  ADS  Google Scholar 

  • Berger-Preiss E, Preiss A, Sielaff K, Raabe M, Ilgen B, Levsen K (1997) The behaviour of pyrethroids indoors: a model study. Indoor Air 7(4):248–261

    Article  CAS  Google Scholar 

  • Berger-Preiss E, Koch W, Behnke W, Gerling S, Kock H, Elflein L, Appel KE (2004) In-flight spraying in aircrafts: determination of the exposure scenario. Int J Hyg Environ Health 207(5):419–430

    Article  PubMed  CAS  Google Scholar 

  • Berger-Preiss E, Boehncke A, Koennecker G, Mangelsdorf I, Holthenrich D, Koch W (2005) Inhalational and dermal exposures during spray application of biocides. Int J Hyg Environ Health 208(5):357–372

    Article  PubMed  CAS  Google Scholar 

  • Berger-Preiss E, Koch W, Gerling S, Kock H, Klasen J, Hoffmann G, Appel KE (2006) Aircraft disinsection: exposure assessment and evaluation of a new pre-embarkation method. Int J Hyg Environ Health 209(1):41–56

    Article  PubMed  Google Scholar 

  • Borm PJA, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins R, Stone V, Kreyling W, Lademann J, Krutmann J, Warheit DB, Oberdorster E (2006) The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol 3:11

    Article  PubMed  CAS  Google Scholar 

  • Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, Bruinink A, Stark WJ (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40(14):4374–4381

    Article  PubMed  CAS  Google Scholar 

  • Bukowiecki N, Hill M, Gehrig R, Zwicky CN, Lienemann P, Hegedues F, Falkenberg G, Weingartner E, Baltensperger U (2005) Trace metals in ambient air: hourly size-segregated mass concentrations determined by synchrotron-XRF. Environ Sci Technol 39(15):5754–5762

    Article  PubMed  CAS  Google Scholar 

  • Bukowiecki N, Gehrig R, Hill M, Lienemann P, Zwicky CN, Buchmann B, Weingartner E, Baltensperger U (2007) Iron, manganese and copper emitted by cargo and passenger trains in Zürich (Switzerland): size-segregated mass concentrations in ambient air. Atmos Environ 41(4):878–889

    Article  CAS  Google Scholar 

  • Class TJ, Kintrup J (1991) Pyrethroids as household insecticides: analysis, indoor exposure and persistence. Fresenius J Anal Chem 340(7):446–453

    Article  CAS  Google Scholar 

  • Dixkens J, Fissan H (1999) Development of an electrostatic precipitator for off-line particle analysis. Aerosol Sci Technol 30(5):438–453

    Article  CAS  Google Scholar 

  • Donaldson K, Li XY, Macnee W (1998) Ultrafine (nanometre) particle mediated lung injury. J Aerosol Sci 29(5–6):553–560

    Article  CAS  Google Scholar 

  • Donaldson K, Stone V, Gilmour PS, Brown DM, Macnee W (2000) Ultrafine particles: mechanisms of lung injury. Philos Trans R Soc A 358(1775):2741–2749

    Article  ADS  CAS  Google Scholar 

  • Fierz M, Kaegi R, Burtscher H (2007a) Theoretical and experimental evaluation of a portable electrostatic TEM sampler. Aerosol Sci Technol 41(5):520–527

    Article  CAS  Google Scholar 

  • Fierz M, Vernooij MGC, Burtscher H (2007b) An improved low-flow thermodenuder. J Aerosol Sci 38(11):1163–1168

    Article  CAS  Google Scholar 

  • Gehrig R, Hill M, Lienemann P, Zwicky CN, Bukowiecki N, Weingartner E, Baltensperger U, Buchmann B (2007) Contribution of railway traffic to local PM10 concentrations in Switzerland. Atmos Environ 41(5):923–933

    Article  CAS  Google Scholar 

  • Gold RE, Holcslaw T, Tupy D, Ballard JB (1984) Dermal and respiratory exposure to applicators and occupants of residences treated with dichlorvos (DDVP). J Econ Entomol 77(2):430–436

    PubMed  CAS  Google Scholar 

  • Helland A, Wick P, Koehler A, Schmid K, Som C (2007) Reviewing the environmental and human health knowledge base of carbon nanotubes. Environ Health Perspect 115(8):1125–1131

    Article  PubMed  CAS  Google Scholar 

  • Hueglin C, Gehrig R, Baltensperger U, Gysel M, Monn C, Vonmont H (2005) Chemical characterisation of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland. Atmos Environ 39(4):637–651

    Article  CAS  Google Scholar 

  • Kaegi R, Gasser P (2006) Application of the focused ion beam technique in aerosol science: detailed investigation of selected, airborne particles. J Microsc 224(2):140–145

    Article  PubMed  MathSciNet  CAS  Google Scholar 

  • Kaiser JP, Wick P, Manser P, Spohn P, Bruinink A (2008) Single walled carbon nanotubes (SWCNT) affect cell physiology and cell architecture. J Mater Sci 19(4):1523–1527

    CAS  Google Scholar 

  • Kaiser JP, Krug HF, Wick P (2009) Nanomaterial cell interactions: how do carbon nanotubes affect cell physiology? Nanomedicine 4(1):57–63

    Article  PubMed  CAS  Google Scholar 

  • Keskinen J, Pietarinen K, Lehtimaeki M (1992) Electrical low pressure impactor. J Aerosol Sci 23(4):353–360

    Article  CAS  Google Scholar 

  • Kirchner U, Scheer V, Vogt R, Kaegi R (2009) TEM study on volatility and potential presence of solid cores in nucleation mode particles from diesel powered passenger cars. J Aerosol Sci 40(1):55–64

    Article  CAS  Google Scholar 

  • Knutson EO, Whitby KT (1975) Aerosol classification by electric mobility: apparatus, theory, and applications. J Aerosol Sci 6(6):443–451

    Article  Google Scholar 

  • Kreyling WG, Semmler-Behnke M, Mueller W (2006) Ultrafine particle–lung interactions: does size matter? J Aerosol Med 19(1):74–83

    Article  PubMed  CAS  Google Scholar 

  • Lehmann U, Mohr M, Schweizer T, Ruetter J (2003) Number size distribution of particulate emissions of heavy-duty engines in real world test cycles. Atmos Environ 37(37):5247–5259

    Article  CAS  Google Scholar 

  • Leppard GG (2008) Nanoparticles in the environment as revealed by transmission Electron microscopy: detection, characterisation and activities. Curr Nanosci 4(3):278–301

    Article  ADS  CAS  Google Scholar 

  • Lienemann CP, Heissenberger A, Leppard GG, Perret D (1998) Optimal preparation of water samples for the examination of colloidal material by transmission electron microscopy. Aquat Microb Ecol 14(2):205–213

    Article  Google Scholar 

  • Limbach LK, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ (2007) Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol 41(11):4158–4163

    Article  PubMed  CAS  Google Scholar 

  • Liu BYH, Whitby KT, Yu HHS (1967) Electrostatic aerosol sampler for light and electron microscopy. Rev Sci Instrum 38(1):100–102

    Article  PubMed  ADS  CAS  Google Scholar 

  • Llewellyn DM, Brazier A, Brown R, Cocker J, Evans ML, Hampton J, Nutley BP, White J (1996) Occupational exposure to permethrin during its use as a public hygiene insecticide. Ann Occup Hyg 40(5):499–509

    PubMed  CAS  Google Scholar 

  • Lorenzo R, Kaegi R, Gehrig R, Grobety B (2006) Particle emissions of a railway line determined by detailed single particle analysis. Atmos Environ 40(40):7831–7841

    Article  CAS  Google Scholar 

  • Morrow PE, Mercer TT (1964) A point-to-plane electrostatic precipitator for particle size sampling. Am Ind Hyg Assoc J 25:8–14

    PubMed  CAS  Google Scholar 

  • Nel A, Xia T, Maler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627

    Article  PubMed  ADS  CAS  Google Scholar 

  • Nurkiewicz TR, Porter DW, Hubbs AF, Cumpston JL, Chen BT, Frazer DG, Castranova V (2008) Nanoparticle inhalation augments particle-dependent systemic microvascular dysfunction. Part Fibre Toxicol 5:1

    Article  PubMed  CAS  Google Scholar 

  • Oberdoerster G, Oberdoerster E, Oberdoerster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839

    Article  CAS  Google Scholar 

  • Oberdoerster G, Stone V, Donaldson K (2007) Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1(1):2–25

    Article  CAS  Google Scholar 

  • Olfert JS, Kulkarni P, Wang J (2008) Measuring aerosol size distributions with the fast integrated mobility spectrometer. J Aerosol Sci 39(11):940–956

    Article  CAS  Google Scholar 

  • Rothen-Rutishauser BM, Kiama SC, Gehr P (2005) A three-dimensional cellular model of the human respiratory tract to study the interaction with particles. Am J Respir Cell Mol Biol 32(4):281–289

    Article  PubMed  CAS  Google Scholar 

  • Rothen-Rutishauser B, Muehlfeld C, Blank F, Musso C, Gehr P (2007) Translocation of particles and inflammatory responses after exposure to fine particles and nanoparticles in an epithelial airway model. Part Fibre Toxicolo 4:9

    Article  CAS  Google Scholar 

  • Sioutas C, Abt E, Wolfson JM, Koutrakis P (1999) Evaluation of the measurement performance of the scanning mobility particle sizer and aerodynamic particle sizer. Aerosol Sci Technol 30(1):84–92

    Article  CAS  Google Scholar 

  • Straube EKE, Bradatsch M (2000) Untersuchungen zur Bewertung der externen Belastung durch Pflanzenschutz- und Schädlingsbekämpfungsmittel beim beruflichen Einsatz im Freiland und in geschlossenen Räumen sowie zur Beanspruchung des Menschen. Aufl. 2. Greifswald: Druckhaus Panzig 1998, 98

  • The Royal Society (2004) Nanoscience and nanotechnologies: opportunities and uncertainties, vol 1. Science Policy Section, The Royal Society, London, p 127

    Google Scholar 

  • Ulrich A, Wichser A (2003) Analysis of additive metals in fuel and emission aerosols of diesel vehicles with and without particle traps. Anal Bioanal Chem 377(1):71–81

    Article  PubMed  CAS  Google Scholar 

  • Van Gulijk C, Marijnissen JCM, Makkee M, Moulijn JA (2000) Evaluation of the ELPI for diesel soot measurements. J Aerosol Sci 31(suppl 1):394–395

    Google Scholar 

  • Vernez D, Bruzzi R, Kupferschmidt H, De-Batz A, Droz P, Lazor R (2006) Acute respiratory syndrome after inhalation of waterproofing sprays: a posteriori exposure-response assessment in 102 cases. J Occup Environ Hyg 3(5):250–261

    Article  PubMed  CAS  Google Scholar 

  • Viana M, Kuhlbusch TAJ, Querol X, Alastuey A, Harrison RM, Hopke PK, Winiwarter W, Vallius M, Szidat S, Prevot ASH, Hueglin C, Bloemen H, Wahlin P, Vecchi R, Miranda AI, Kasper-Giebl A, Maenhaut W, Hitzenberger R (2008) Source apportionment of particulate matter in Europe: a review of methods and results. J Aerosol Sci 39(10):827–849

    Article  CAS  Google Scholar 

  • Wick P, Manser P, Spohn P, Bruinink A (2006) In vitro evaluation of possible adverse effects of nanosized materials. Physica Status Solidi B Basic Res 243(13):3556–3560

    Article  ADS  CAS  Google Scholar 

  • Wick P, Manser P, Limbach LK, Dettlaff-Weglikowska U, Krumeich F, Roth S, Stark WJ, Bruinink A (2007) The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett 168(2):121–131

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledegments

The authors would like to thank the FOPH (Swiss Federal Office of Public Health) for funding, especially Steffen Wengert, and also many co-workers not mentioned, for their time and help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Hagendorfer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 119 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagendorfer, H., Lorenz, C., Kaegi, R. et al. Size-fractionated characterization and quantification of nanoparticle release rates from a consumer spray product containing engineered nanoparticles. J Nanopart Res 12, 2481–2494 (2010). https://doi.org/10.1007/s11051-009-9816-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9816-6

Keywords

Navigation