Skip to main content
Log in

Heat transfer enhancement by application of nano-powder

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this investigation, laminar flow heat transfer enhancement in circular tube utilizing different nanofluids including Al2O3 (20 nm), CuO (50 nm), and Cu (25 nm) nanoparticles in water was studied. Constant wall temperature was used as thermal boundary condition. The results indicate enhancement of heat transfer with increasing nanoparticle concentrations, but an optimum concentration for each nanofluid suspension can be found. Based on the experimental results, metallic nanoparticles show better enhancement of heat transfer coefficient in comparison with oxide particles. The promotions of heat transfer due to utilizing nanoparticles are higher than the theoretical correlation prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A :

Tube cross-sectional area (m2)

Cp nf :

Nanofluid specific heat (kJ kg−1 K−1)

Cp s :

Specific heat of nanoparticle (kJ kg−1 K−1)

Cp W :

Specific heat of water (kJ kg−1 K−1)

D :

Tube diameter (m)

\( \overline{{h_{\text{nf}} }} (\exp ) \) :

Nanofluid experimental average heat transfer coefficient (Wm−2 K−1)

k nf :

Nanofluid thermal conductivity (Wm−1 K−1)

k s :

Thermal conductivity of nanoparticle (Wm−1 K−1)

k W :

Thermal conductivity of water (Wm−1 K−1)

L :

Tube length (m)

m s :

Nanoparticle mass in nanofluid suspension (kg)

\( \overline{{Nu_{\text{nf}} }} (\exp ) \) :

Nanofluid experimental average Nusselt number

\( \overline{{Nu_{\text{nf}} }} (th) \) :

Nanofluid Nusselt number calculated form Seider–Tate equation

Pe nf :

Nanofluid Peclet number

Pr nf :

Nanofluid Prandtl number

Re nf :

Nanofluid Reynolds number

Tb 1 :

Inlet bulk temperature (K)

Tb 2 :

Exit bulk temperature (K)

\( \overline{Tb} \) :

Average bulk temperature (K)

Tw :

Tube wall temperature (K)

\( \overline{U} \) :

Average fluid velocity (m s−1)

V s :

Nanoparticle volume in nanofluid suspension (m3)

V t :

Total volume of nanofluid (m3)

μ nf :

Nanofluid viscosity (Pa)

μ W :

Water viscosity (Pa)

μ Wnf :

Nanofluid viscosity at tube wall temperature (Pa)

ν :

Nanoparticle volume fraction

ρ nf :

Nanofluid density (kg m−3)

ρ s :

Nanoparticle density (kg m−3)

ρ W :

Water density (kg m−3)

References

  • Ahuja AS (1975) Augmentation of heat transport in laminar flow of polystyrene suspensions. I. Experiments and results. J Appl Phys 46:3408–3416

    Article  CAS  ADS  Google Scholar 

  • Bang IC, Heung Chang S (2005) Boiling heat transfer performance and phenomena of Al2O 3-water nano-fluids from a plain surface in a pool. Int J Heat Mass Transf 48:2407–2419

    Article  CAS  Google Scholar 

  • Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED, New York

    Google Scholar 

  • Choi SUS, Zhang ZG, Yu W et al (2001) Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 79:2252–2254

    Article  CAS  ADS  Google Scholar 

  • Das SK, Putra N, Roetzel W (2003a) Pool boiling characteristics of nano-fluids. Int J Heat Mass Transf 46:851–862

    Article  CAS  Google Scholar 

  • Das SK, Putra N, Roetzel W (2003b) Pool boiling of nano-fluids on horizontal narrow tubes. Int J Multiph Flow 29:1237–1247

    Article  MATH  CAS  Google Scholar 

  • Das SK, Putra N, Thiesen P et al (2003c) Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transf 125:567–574

    Article  CAS  Google Scholar 

  • Drew DA, Passman SL (1999) Theory of multi component fluids. Springer, Berlin

    Google Scholar 

  • Eastman JA, Choi US, Li S et al (1999) Novel thermal properties of nanostructured materials. Mater Sci Forum 312:629–634

    Article  Google Scholar 

  • Eastman JA, Choi SUS, Li S et al (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78:718–720

    Article  CAS  ADS  Google Scholar 

  • Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam 1:187–191

    Article  CAS  Google Scholar 

  • Keblinski P, Phillpot SR, Choi SUS et al (2001) Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf 45:855–863

    Article  Google Scholar 

  • Khanafer K, Vafai K, Lightstone M (2003) Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf 46:3639–3653

    Article  MATH  CAS  Google Scholar 

  • Koo J, Kleinstreuer C (2005) Laminar nanofluid flow in microheat-sinks. Int J Heat Mass Transf 48:2652–2661

    Article  MATH  CAS  Google Scholar 

  • Lee S, Choi SUS, Li S et al (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf 121:280–288

    Article  CAS  Google Scholar 

  • Li Q, Xuan Y (2000) Experimental investigation on transport properties of nanofluids. Heat Transf Sci Technol 2000:757–762

    Google Scholar 

  • Liu KV, Choi SUS, Kasza KE (1988) Measurement of pressure drop and heat transfer in turbulent flows of particulate slurries. Argonne National Laboratory Report

  • Masuda H, Ebata A, Teramae K et al (1993) Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of c-AlO3, SiO2 and TiO2 ultra-fine particles). Netsu Bussei (Japan) 4:227–233

    Google Scholar 

  • Maxwell JC (1904) A treatise on electricity and magnetism. Oxford University Press, Cambridge

    Google Scholar 

  • Murshed SMS, Leong KC, Yang C (2005) Enhanced thermal conductivity of TiO2—water based nanofluids. Int J Therm Sci 44:367–373

    Article  CAS  Google Scholar 

  • Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf 11:151–170

    Article  CAS  ADS  Google Scholar 

  • Putra N, Roetzel W, Das SK (2003) Natural convection of nano-fluids. Heat Mass Transf/Waerme-und Stoffuebertragung 39:775–784

    Article  ADS  Google Scholar 

  • Roy G, Nguyen CT, Lajoie PR (2004) Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of nanofluids. Superlattices Microstruct 35:497–511

    Article  CAS  ADS  Google Scholar 

  • Seider EN, Tate GE (1936) Heat transfer and pressure drop of liquid in tubes. Ind Eng Chem 28:1429–1434

    Google Scholar 

  • Vadasz JJ, Govender S, Vadasz P (2005) Heat transfer enhancement in nano-fluids suspensions: possible mechanisms and explanations. Int J Heat Mass Transf 48:2673–2683

    Article  Google Scholar 

  • Vassallo P, Kumar R, D’Amico S (2004) Pool boiling heat transfer experiments in silica-water nano-fluids. Int J Heat Mass Transf 47:407–411

    Article  CAS  Google Scholar 

  • Wang BX, Zhou LP, Peng XF (2003) A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int J Heat Mass Transf 46:2665–2672

    Article  MATH  CAS  Google Scholar 

  • Webb RL (1993) Principle of enhanced heat transfer. John Wiley & Sons, New York

    Google Scholar 

  • Wen D, Ding Y (2004) Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int J Heat Mass Transf 47:5181–5188

    Article  CAS  Google Scholar 

  • Xie H, Wang J, Xi T et al (2002) Thermal conductivity of suspensions containing nanosized SiC particles. Int J Thermophys 23:571–580

    Article  CAS  Google Scholar 

  • Xuan Y, Li Q (2000) Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow 21:58–64

    Article  CAS  Google Scholar 

  • Xuan Y, Li Q (2003) Investigation on convective heat transfer and flow features of nanofluids. J Heat Transf 125:151–155

    Article  CAS  Google Scholar 

  • Xuan Y, Roetzel W (2000) Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf 43:3701–3707

    Article  MATH  CAS  Google Scholar 

  • Xue Q, Xu WM (2005) A model of thermal conductivity of nanofluids with interfacial shells. Mater Chem Phys 90:298–301

    Article  CAS  ADS  Google Scholar 

  • Yang Y, Zhang ZG, Grulke EA et al (2005) Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow. Int J Heat Mass Transf 48:1107–1116

    Article  CAS  Google Scholar 

  • Yu W, Choi SUS (2003) The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanopart Res 5:167–171

    Article  CAS  Google Scholar 

  • Zhou DW (2004) Heat transfer enhancement of copper nanofluid with acoustic cavitation. Int J Heat Mass Transf 47:3109–3117

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Hamed Mosavian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mosavian, M.T.H., Heris, S.Z., Etemad, S.G. et al. Heat transfer enhancement by application of nano-powder. J Nanopart Res 12, 2611–2619 (2010). https://doi.org/10.1007/s11051-009-9840-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9840-6

Keywords

Navigation