Skip to main content
Log in

How can nanobiotechnology oversight advance science and industry: examples from environmental, health, and safety studies of nanoparticles (nano-EHS)

  • Special focus: Governance of Nanobiotechnology
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanotechnology has great potential to transform science and industry in the fields of energy, material, environment, and medicine. At the same time, more concerns are being raised about the occupational health and safety of nanomaterials in the workplace and the implications of nanotechnology on the environment and living systems. Studies on environmental, health, and safety (EHS) issues of nanomaterials have a strong influence on public acceptance of nanotechnology and, eventually, affect its sustainability. Oversight and regulation by government agencies and non-governmental organizations (NGOs) play significant roles in ensuring responsible and environmentally friendly development of nanotechnology. The EHS studies of nanomaterials can provide data and information to help the development of regulations and guidelines. We present research results on three aspects of EHS studies: physico-chemical characterization and measurement of nanomaterials; emission, exposure, and toxicity of nanomaterials; and control and abatement of nanomaterial releases using filtration technology. Measurement of nanoparticle agglomerates using a newly developed instrument, the Universal NanoParticle Analyzer (UNPA), is discussed. Exposure measurement results for silicon nanoparticles in a pilot scale production plant are presented, as well as exposure measurement and toxicity study of carbon nanotubes (CNTs). Filtration studies of nanoparticle agglomerates are also presented as an example of emission control methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Brown RC, Hemingway MA (1995) Electric charge distribution and capacitance of agglomerates of spherical particles: theory and experimental simulation. J Aerosol Sci 26:1197–1206

    Article  CAS  Google Scholar 

  • Cai J, Lu N, Sorensen CM (1993) Comparison of size and morphology of soot aggregates as determined by scattering and electron microscope analysis. Langmuir 9:2861–2867

    Article  CAS  Google Scholar 

  • Chang J-S (1981) Theory of diffusion charging of arbitrarily shaped conductive aerosol particles by unipolar ions. J Aerosol Sci 12:19–26

    Article  Google Scholar 

  • DeCarlo PF, Slowik JG, Worsnop DR, Davidovits P, Jimenez JL (2004) Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements, part 1: theory. Aerosol Sci Technol 38:1185–1205

    Article  CAS  Google Scholar 

  • Endo Y, Chen D-R, Pui DYH (1998) Effects of particle polydispersity and shape factor during dust cake loading on air filters. Powder Technol 98:241–249

    Article  CAS  Google Scholar 

  • Fu TH, Cheng MT, Shaw DT (1990) Filtration of chain agglomerate aerosols by model screen filter. Aerosol Sci Technol 13:151–161

    Article  Google Scholar 

  • Geller M, Biswas S, Sioutas C (2006) Determination of particle effective density in urban environments with a differential mobility analyzer and aerosol particle mass analyzer. Aerosol Sci Technol 40:709–723

    Article  CAS  Google Scholar 

  • Han JH, Lee EJ, Lee JH, So KP, Lee YH, Bae GN, Lee SB, Ji JH, Cho MH, Yu IJ (2008) Monitoring multiwalled carbon nanotube exposure in carbon nanotube research facility. Inhal Toxicol 20:741–749

    Article  Google Scholar 

  • Hülser TP, Schnurre SM, Wiggers H, Schulz C (2010) Gas-phase synthesis of highly-specific nanoparticles on the pilot-plant scale. In: Proceedings of world congress on particle technology (WCPT6)

  • Johnson TV (2006) Diesel emission control in review, 2006 SAE World Congress, Detroit, MI

  • Kim SC, Wang J, Emery M, Shin W-G, Mullholand G, Pui DYH (2009a) Structural property effect of nanoparticle agglomerates on particle penetration through fibrous filter. Aerosol Sci Technol 43:344–355

    Article  CAS  Google Scholar 

  • Kim SC, Wang J, Shin W-G, Scheckman J, Pui DYH (2009b) Structural properties and filter loading characteristics of soot agglomerates. Aerosol Sci Technol 43:1033–1041

    Article  CAS  Google Scholar 

  • Kim SC, Chen DR, Qi C, Gelein RM, Finkelstein JN, Elder A, Bentley K, Oberdorster G, Pui DYH (2010) A nanoparticle dispersion method for in vitro and in vivo nanotoxicity study. Nanotoxicology 4:42–51

    Article  Google Scholar 

  • Koylu UO, Faeth GM, Farias TL, Carvalho MG (1995) Fractal and projected structure properties of soot aggregates. Combust Flame 100:621–633

    Article  CAS  Google Scholar 

  • Kuhlbusch TA, Fissan H (2006) Particle characteristics in the reactor and pelletizing areas of carbon black production. J Occup Environ Hyg 3:558–567

    Article  CAS  Google Scholar 

  • Kuhlbusch TAJ, Neumann S, Fissan H (2004) Number size distribution, mass concentration, and particle composition of PM1, PM2.5 and PM10 in bagging areas of carbon black production. J Occup Environ Hyg 1:660–671

    Article  CAS  Google Scholar 

  • Lall AA, Friedlander SK (2006) On-line measurement of ultrafine aggregate surface area and volume distributions by electrical mobility analysis: I. Theoretical analysis. J Aerosol Sci 37:260–271

    Article  CAS  Google Scholar 

  • Lange R, Fissan H, Schmidt-Ott A (1999) Predicting the collection efficiency of agglomerates in fibrous filter. Part Part Syst Char 16:60–65

    Article  CAS  Google Scholar 

  • Maricq MM, Xu N (2004) The effective density and fractal dimension of soot particles from premixed flames and motor vehicle exhaust. J Aerosol Sci 35:1251–1274

    Article  CAS  Google Scholar 

  • Maynard AD (2006) Nanotechnology: a research strategy for addressing risk. Project on Emerging Nanotechnologies, Washington, DC

    Google Scholar 

  • Maynard AD, Pui DYH (2007) Nanoparticles and occupational health. Springer, New York

    Book  Google Scholar 

  • Maynard AD, Baron PA, Foley M, Shvedova AA, Kisin ER, Castranova V (2004) Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material. J Toxicol Environ Health Part A 67:87–107

    Article  CAS  Google Scholar 

  • McMurry PH, Shepherd M, Vickery JS (2004) Particulate matter science for policy makers: a NARSTO assessment. Cambridge University Press, Cambridge

    Google Scholar 

  • National Institute for Occupational Safety, Health (NIOSH) (2009) Strategic plan for NIOSH nanotechnology research and guidance—filling the knowledge gaps. Department of Health and Human Services, Washington, DC

    Google Scholar 

  • Neimark AV, Koylu OU, Rosner DE (1996) Extended characterization of combustion-generated aggregates: self-affinity and lacunarities. J Colloid Interface Sci 180:590–597

    Article  CAS  Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  Google Scholar 

  • Olfert JS, Symonds JPR, Collings N (2007) The effective density and fractal dimension of particles emitted from a light-duty diesel vehicle with a diesel oxidation catalyst. J Aerosol Sci 38:69–82

    Article  CAS  Google Scholar 

  • Park K, Kittelson DB, McMurry PH (2004a) Structural properties of diesel exhaust particles measured by transmission electron microscope (TEM): relationships to particle mass and mobility. Aerosol Sci Technol 38:881–889

    Article  CAS  Google Scholar 

  • Park K, Kittelson DB, Zachariah MR, McMurry PH (2004b) Measurement of inherent material density of nanoparticle agglomerates. J Nanopart Res 6:267–272

    Article  CAS  Google Scholar 

  • Park K, Dutcher D, Emery M, Pagels J, Sakurai H, Scheckman J, Qian S, Stolzenburg MR, Wang X, Yang J, McMurry PH (2008) Tandem measurements of aerosol properties—a review of mobility techniques with extensions. Aerosol Sci Technol 42:801–816

    Article  CAS  Google Scholar 

  • Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH, Seaton A, Stone V, Brown S, MacNee W, Donaldson K (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423–428

    Article  CAS  Google Scholar 

  • Pratsinis SE (1998) Flame aerosol synthesis of ceramic powders. Prog Energy Combust Sci 24:197–219

    Article  CAS  Google Scholar 

  • Roco MC (2006) Nanotechnology’s future. Sci Am (Magazine)

  • Rogak SN, Flagan RC, Nguyen HV (1993) The mobility and structure of aerosol agglomerates. Aerosol Sci Technol 18:25–47

    Article  CAS  Google Scholar 

  • Ryman-Rasmussen JP, Cesta MF, Brody AR, Shipley-Phillips JK, Everitt JI, Tewksbury EW, Moss OR, Wong BA, Dodd DE, Anderson ME, Bonner JC (2009a) Inhaled carbon nanotubes reach the subpleural tissue in mice. Nat Nanotechnol 4:708–710

    Article  Google Scholar 

  • Ryman-Rasmussen JP, Tewksbury EW, Moss OR, Cesta MF, Wong BA, Bonner JC (2009b) Inhaled multiwalled carbon nanotubes potentiate airway fibrosis in a murine model of allergic asthma. Am J Resp Cell Mol Biol 40:349–358

    Article  CAS  Google Scholar 

  • Sakamoto Y, Nakae D, Fukumori N, Tayama K, Maekawa A, Imai K, Hirose A, Nishimura T, Ohashi N, Ogata A (2009) Induction of mesothelioma by a single intrascrotal administration of multi-wall carbon nanotube in intact male Fischer 344 rats. J Toxicol Sci 34:65–76

    Article  CAS  Google Scholar 

  • Samson RJ, Mulholland GW, Gentry JW (1987) Structural analysis of soot agglomerates. Langmuir 3:272–281

    Article  CAS  Google Scholar 

  • Shin WG, Wang J, Mertler M, Sachweh B, Fissan H, Pui DYH (2009a) Structural properties of silver nanoparticle agglomerates based on transmission electron microscopy: relationship to particle mobility analysis. J Nanopart Res 11:163–173

    Article  CAS  Google Scholar 

  • Shin WG, Mulholland GW, Kim SC, Wang J, Emery MS, Pui DYH (2009b) Friction coefficient and mass of silver agglomerates in the transition regime. J Aerosol Sci 40:573–587

    Article  CAS  Google Scholar 

  • Shin WG, Wang J, Mertler M, Sachweh B, Fissan H, Pui DYH (2010) The effect of particle morphology on unipolar diffusion charging of nanoparticle agglomerates in the transition regime. J Aerosol Sci 41:975–986

    Article  CAS  Google Scholar 

  • Slowik JG, Stainken K, Davidovits P, Williams LR, Jayne JT, Kolb CE, Worsnop DR, Rudich Y, DeCarlo PF, Jimenez JL (2004) Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 2: application to combustion-generated soot aerosols as a function of fuel equivalence ratio. Aerosol Sci Technol 38:1206–1222

    Article  CAS  Google Scholar 

  • Takagi A, Hirose A, Nishimura T, Fukumori N, Ogata A, Ohashi N, Kitajima S, Kanno J (2008) Induction of mesothelioma in p53þ/- mouse by intraperitoneal application of multi-wall carbon nanotube. J Toxicol Sci 33:105–116

    Article  CAS  Google Scholar 

  • Van Gulijk C, Marijnissen JCM, Makkee M, Moulijn JA, Schmidt-Ott A (2004) Measuring diesel soot with a scanning mobility particle sizer and an electrical low-pressure impactor: performance assessment with a model for fractal-like agglomerates. J Aerosol Sci 35:633–655

    Article  Google Scholar 

  • Wang J, Chen DR, Pui DYH (2007) Modeling of filtration efficiency of nanoparticles in standard filter media. J Nanopart Res 9:109–115

    Article  Google Scholar 

  • Wang J, Shin W-G, Mertler M, Sachweh B, Fissan H, Pui DYH (2010) Measurement of nanoparticle agglomerates by combined measurement of electrical mobility and unipolar charging properties. Aerosol Sci Technol 44:97–108

    Article  CAS  Google Scholar 

  • Wentzel M, Gorzawski H, Naumann KH, Saathoff H, Weinbruch S (2003) Transmission electron microscopical and aerosol dynamical characterization of soot aerosols. J Aerosol Sci 34:1347–1370

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Preparation of this article was supported by National Science Foundation (NSF) Grant #0608791, “NIRT: Evaluating Oversight Models for Active Nanostructures and Nanosystems: Learning from Past Technologies in a Societal Context” (Principal Investigator: S. M. Wolf; Co-PIs: E. Kokkoli, J. Kuzma, J. Paradise, and G. Ramachandran). The research was also partially supported by the National Institute of Environmental Health Sciences (NIEHS) Grant #1RC2ES018741-01 (sub-grant 100029-D) on “Hazard Assessment and Risk Estimation of Inhaled Nanomaterials Exposure” and by the NSF Grant #0646236 on “Experimental and Numerical Simulation of the Fate of Airborne Nanoparticles from a Leak in a Manufacturing Process to Assess Worker Exposure.” The views expressed are those of the authors and do not necessarily reflect the views of NSF or NIEHS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Asbach, C., Fissan, H. et al. How can nanobiotechnology oversight advance science and industry: examples from environmental, health, and safety studies of nanoparticles (nano-EHS). J Nanopart Res 13, 1373–1387 (2011). https://doi.org/10.1007/s11051-011-0236-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0236-z

Keywords

Navigation