Skip to main content
Log in

Microwave-assisted rapid synthesis of Ag nanoparticles/graphene nanosheet composites and their application for hydrogen peroxide detection

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Ag nanoparticles/graphene nanosheet (AgNPs/GN) composites have been rapidly prepared by a one-pot microwave-assisted reduction method, carried out by microwave irradiation of a N,N-dimethylformamide (DMF) solution of graphene oxide (GO) and AgNO3. Several analytical techniques including UV–vis spectroscopy, FT-IR spectroscopy, Raman spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) have been used to characterize the resulting AgNPs/GN composites. It suggests that such composites exhibit good catalytic activity toward reduction of hydrogen peroxide (H2O2), leading to a H2O2 sensor with a fast amperometric response time of less than 2 s. The linear detection range is estimated to be from 0.1 to 100 mM (r = 0.999), and the detection limit is estimated to be 0.5 μM at a signal-to-noise ratio of 3.

Graphical abstract

 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdelsayed V, Moussa S, Hassan HM, Aluri HS, Collinson MM, El-Shall MS (2010) Photothermal deoxygenation of graphite oxide with laser excitation in solution and graphene-aided increase in water temperature. J Phys Chem Lett 1:2804–2809. doi:10.1021/jz1011143

    Article  CAS  Google Scholar 

  • Ai K, Liu Y, Lu L, Cheng X, Huo L (2011) A novel strategy for making soluble reduced graphene oxide sheets cheaply by adopting an endogenous reducing agent. J Mater Chem 21:3365–3370. doi:10.1039/c0jm02865

    Article  CAS  Google Scholar 

  • Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145. doi:10.1021/cr900070d

    Article  CAS  Google Scholar 

  • Cai W, Zhong H, Zhang L (1998) Optical measurements of oxidation behavior of silver nanometer particle within pores of silica host. J Appl Phys 83:1705–1711. doi:10.1063/1.366888

    Article  CAS  Google Scholar 

  • Chen D, Tang L, Li J (2010a) Graphene-based materials in electrochemistry. Chem Soc Rev 39:3157–3180. doi:10.1039/b923596e

    Article  CAS  Google Scholar 

  • Chen W, Yan L, Bangal PR (2010b) Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 48:1146. doi:10.1016/j.carbon.2009.11.037

    Article  CAS  Google Scholar 

  • Fang B, Gu A, Wang G, Wang W, Feng Y, Zhang C, Zhang X (2009) Silver oxide nanowalls grown on Cu substrate as an enzymeless glucose sensor. ACS Appl Mater Interfaces 1:2829–2834. doi:10.1021/am900576z

    Article  CAS  Google Scholar 

  • Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191. doi:10.1038/nmat1849

    Article  CAS  Google Scholar 

  • Guo S, Wen D, Zhai Y, Dong S, Wang E (2010) Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: one-pot, rapid synthesis, and used as new electrode material for electrochemical sensing. ACS Nano 4:3959–3968. doi:10.1021/nn100852h

    Article  CAS  Google Scholar 

  • Hassan HMA, Abdelsayed V, Khder AERS, AbouZeid KM, Terner J, El-Shall MS, Al-Resayes SI, El-Azhary AA (2009) Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media. J Mater Chem 19:3832–3837. doi:10.1039/b906253j

    Article  CAS  Google Scholar 

  • Hranisavljevic J, Dimitrijevic NM, Wurtz GA, Wiederrecht GP (2002) Photoinduced charge separation reactions of J-aggregates coated on silver nanoparticles. J Am Chem Soc 124:4536–4537. doi:10.1021/ja012263e

    Article  CAS  Google Scholar 

  • Hummers WS Jr, Offeman R (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339. doi:10.1021/ja01539a017

    Article  CAS  Google Scholar 

  • Janowska I, Chizari K, Ersen O, Zafeiratos S, Soubane D, Costa VD, Speisser V, Boeglin C, Houllé M, Bégin D, Plee D, Ledoux MJ, Pham-Huu C (2010) Microwave synthesis of large few-layer graphene sheets in aqueous solution of ammonia. Nano Res 3:126–137. doi:10.1007/s12274-010-1017-1

    Article  CAS  Google Scholar 

  • Jasuja K, Linn J, Meltion S, Berry V (2010) Microwave-reduced uncapped metal nanoparticles on graphene: tuning catalytic, electrical, and raman properties. J Phys Chem Lett 1:1853–1860. doi:10.1021/jz100580x

    Article  CAS  Google Scholar 

  • Kamat PV (2010) Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J Phys Chem Lett 1:520–527. doi:10.1021/jz900265j

    Article  CAS  Google Scholar 

  • Kim J, Cote LJ, Kim F, Yuan W, Shull KR, Huang J (2010) Graphene oxide sheets at interfaces. J Am Chem Soc 132:8180–8186. doi:10.1021/ja102777p

    Article  CAS  Google Scholar 

  • Li J, Liu CY (2010) Ag/graphene heterostructures: synthesis, characterization and optical properties. Eur J Inorg Chem 1244–1248. doi:10.1002/ejic.200901048

  • Li Z, Yao Y, Lin Z, Moon KS, Lin W, Wong C (2010) Ultrafast, dry microwave synthesis of graphene sheets. J Mater Chem 20:4781–4783. doi:10.1039/c0jm00168f

    Article  CAS  Google Scholar 

  • Lightcap IV, Kosel TH, Kamat PV (2010) Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. Storing and shuttling electrons with reduced graphene oxide. Nano Lett 10:577–583. doi:10.1021/nl9035109

    Article  CAS  Google Scholar 

  • Liu S, Tian J, Wang L, Li H, Zhang Y, Sun X (2010) Stable aqueous dispersion of graphene nanosheets: noncovalent functionalization by a polymeric reducing agent and their subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection. Macromolecules 43:10078–10083. doi:10.1021/ma102230m

    Article  CAS  Google Scholar 

  • Liu S, Tian J, Wang L, Sun X (2011) A method for the production of reduced graphene oxide using benzylamine as a reducing and stabilizing agent and its subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection. Carbon. doi:10.1016/j.carbon.2011.03.036

  • Lu G, Mao S, Park S, Ruoff RS, Chen J (2009) Facile, noncovalent decoration of graphene oxide sheets with nanocrystals. Nano Res 2:192–200. doi:10.1007/s12274-009-9017-8

    Article  CAS  Google Scholar 

  • Lu W, Liao F, Luo Y, Chang G, Sun X (2011) Hydrothermal synthesis of well-stable silver nanoparticles and their application for enzymeless hydrogen peroxide detection. Electrochim Acta 56:2295–2298. doi:10.1016/j.electacta.2010.11.053

    Article  CAS  Google Scholar 

  • Luo L, Yu S, Qian H, Zhou T (2005) Large-scale fabrication of flexible silver/cross-linked poly(vinyl alcohol) coaxial nanocables by a facile solution approach. J Am Chem Soc 127:2822–2823. doi:10.1021/ja0428154

    Article  CAS  Google Scholar 

  • McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Pruďhomme RK, Aksay IA (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19:4396–4404. doi:10.1021/cm0630800

    Article  CAS  Google Scholar 

  • Murugan AV, Muraliganth T, Manthiram A (2009) Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy storage. Chem Mater 21:5004–5006. doi:10.1021/cm902413c

    Article  CAS  Google Scholar 

  • Muszynski R, Seger B, Kamat PV (2008) Decorating graphene sheets with gold nanoparticles. J Phys Chem C 112:5263–5266. doi:10.1021/jp800977b

    Article  CAS  Google Scholar 

  • Nethravathi C, Rajamathi M (2008) Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon 46:1994–1998. doi:10.1016/j.carbon.2008.08.013

    Article  CAS  Google Scholar 

  • Novoselov KS, Geim SV, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. doi:10.1126/science.1102896

    Article  CAS  Google Scholar 

  • Park S, An J, Piner RD, Jung I, Yang D, Velamakanni A, Nguyen ST, Ruoff RS (2008) Aqueous suspension and characterization of chemically modified graphene sheets. Chem Mater 20:6592–6594. doi:10.1021/cm801932u

    Article  CAS  Google Scholar 

  • Park S, An J, Jung I, Piner RD, An SJ, Li X, Velamakanni A, Ruoff RS (2009) Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett 9:1593–1597. doi:10.1021/nl803798y

    Article  CAS  Google Scholar 

  • Pasricha R, Gupta S, Srivastava AK (2009) A facile and novel synthesis of Ag–graphene-based nanocomposites. Small 5:2253–2259. doi:10.1002/smll.200900726

    Article  CAS  Google Scholar 

  • Pastoriza-Santos I, Liz-Marzán LM (2002a) Formation of PVP-protected metal nanoparticles in DMF. Langmuir 18:2888–2894. doi:10.1021/la015578g

    Article  CAS  Google Scholar 

  • Pastoriza-Santos I, Liz-Marzán LM (2002b) Synthesis of silver nanoprisms in DMF. Nano Lett 2:903–905. doi:10.1021/nl025638i

    Article  CAS  Google Scholar 

  • Pol VG, Srivastava DN, Palchik O, Palchik V, Slifkin MA, Weiss AM, Gedanken A (2002) Sonochemical deposition of silver nanoparticles on silica spheres. Langmuir 18:3352–3357. doi:10.1021/la0155552

    Article  CAS  Google Scholar 

  • Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Graphene: the new two-dimensional nanomaterial. Angew Chem Int Ed 48:7752–7777. doi:10.1002/anie.200901678

    Article  CAS  Google Scholar 

  • Shen J, Shi M, Li N, Yan B, Ma H, Hu Y, Ye M (2010) Facile synthesis and application of Ag-chemically converted graphene nanocomposite. Nano Res 3:339–349. doi:10.1007/s12274-010-1037-x

    Article  CAS  Google Scholar 

  • Song Y, Cui K, Wang L, Chen S (2009) The electrodeposition of Ag nanoparticles on a type I collagen-modified glassy carbon electrode and their applications as a hydrogen peroxide sensor. Nanotechnology 20:105501. doi:10.1088/0957-4484/20/10/105501

    Article  Google Scholar 

  • Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286. doi:10.1038/nature04969

    Article  CAS  Google Scholar 

  • Sun X, Dong S, Kang E (2004) One-step preparation and characterization of poly(propyleneimine) dendrimer-protected silver nanoclusters. Macromolecules 37:7105–7108. doi:10.1021/ma048847t

    Article  CAS  Google Scholar 

  • Sundaram RS, Gómez-Navarro C, Balasubramanian K, Burghard M, Kern K (2008) Electrochemical modification of graphene. Adv Mater 20:3050–3053. doi:10.1002/adma.200800198

    Article  CAS  Google Scholar 

  • Tian J, Liu S, Sun X (2010) Supramolecular microfibrils of o-phenylenediamine dimers: oxidation-induced morphology change and the spontaneous formation of Ag nanoparticle decorated nanofibers. Langmuir 26:15112–15116. doi:10.1021/la103038m

    Article  CAS  Google Scholar 

  • Tian J, Li H, Lu W, Luo Y, Wang L, Sun X (2011) One-step preparation of Ag nanoparticle-decorated coordination polymer nanobelts and their application for enzymeless H2O2 detection. Analyst 136:1806–1809. doi:10.1039/c0an00929f

    Article  CAS  Google Scholar 

  • Tung VC, Allen MJ, Yang Y, Kaner RB (2009) High-throughput solution processing of large-scale graphene. Nat Nanotechnol 4:25–29. doi:10.1038/NNANO.2008.329

    Article  CAS  Google Scholar 

  • Vinodgopal K, Neppolian B, Lightcap IV, Grieser F, Ashokkumar M, Kamat PV (2010) Sonolytic design of graphene–Au nanocomposites. Simultaneous and sequential reduction of graphene oxide and Au(III). J Phys Chem Lett 1:1987–1993. doi:10.1021/jz1006093

    Article  CAS  Google Scholar 

  • Wang H, Robinson JT, Li X, Dai H (2009) Solvothermal reduction of chemically exfoliated graphene sheets. J Am Chem Soc 131:9910–9911. doi:10.1021/ja904251p

    Article  CAS  Google Scholar 

  • Wei T, Fan Z, Luo G, Zheng C, Xie D (2008) A rapid and efficient method to prepare exfoliated graphite by microwave irradiation. Carbon 47:337–339. doi:10.1016/j.carbon.2008.10.013

    Article  Google Scholar 

  • Welch C, Banks C, Simm A, Compton R (2005) Silver nanoparticle assemblies supported on glassy-carbon electrodes for the electro-analytical detection of hydrogen peroxide. Anal Bioanal Chem 382:12–21. doi:10.1007/s00216-005-3205-5

    Article  CAS  Google Scholar 

  • Xu C, Wang X (2009) Fabrication of flexible metal-nanoparticle films using graphene oxide sheets as substrates. Small 5:2212–2217. doi:10.1002/smll.200900548

    Article  CAS  Google Scholar 

  • Xu GC, Shi JJ, Li DJ, Xing HL (2009) On Interaction between nano-Ag and P(AMPS-co-MMA) copolymer synthesized by ultrasonic. J Polym Res 16:295–299. doi:10.1007/s10965-008-9229-8

    Article  CAS  Google Scholar 

  • Zhang Y, Tan YW, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438:201–204. doi:10.1038/nature04235

    Article  CAS  Google Scholar 

  • Zhang H, Wang G, Chen D, Lv X, Li J (2008) Tuning photoelectrochemical performances of Ag–TiO2 nanocomposites via reduction/oxidation of Ag. Chem Mater 20:6543–6549. doi:10.1021/cm801796q

    Article  CAS  Google Scholar 

  • Zhang M, Lei D, Yin X, Chen L, Li Q, Wang Y, Wang T (2010) Magnetite/graphene composites: microwave irradiation synthesis and enhanced cycling and rate performances for lithium ion batteries. J Mater Chem 20:5538–5543. doi:10.1039/c0jm00638f

    Article  CAS  Google Scholar 

  • Zhou X, Huang X, Qi X, Wu S, Xue C, Boey FYC, Yan Q, Chen P, Zhang H (2009) In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. J Phys Chem C 113:10842–10846. doi:10.1021/jp903821n

    Article  CAS  Google Scholar 

  • Zhu C, Guo S, Fang Y, Dong S (2010a) Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4:2429–2437. doi:10.1021/nn1002387

    Article  CAS  Google Scholar 

  • Zhu Y, Murali S, Stoller MD, Velamakanni A, Piner RD, Ruoff RS (2010b) Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon 48:2106–2122. doi:10.1016/j.carbon.2010.02.001

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by National Basic Research Program of China (No. 2011CB935800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuping Sun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 94 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, S., Tian, J., Wang, L. et al. Microwave-assisted rapid synthesis of Ag nanoparticles/graphene nanosheet composites and their application for hydrogen peroxide detection. J Nanopart Res 13, 4539–4548 (2011). https://doi.org/10.1007/s11051-011-0410-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0410-3

Keywords

Navigation