Skip to main content

Advertisement

Log in

Magnetic nanoparticles coated with polysaccharide polymers for potential biomedical applications

  • Special Issue: Nanostructured Materials 2010
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This study reports a two-steps route for obtaining magnetic nanoparticles–polysaccharide hybrid materials consisting of Fe3O4, NiFe2O4 and CuFe2O4 nanoparticles synthesis by coprecipitation method in the presence of a soft template followed by coating of ferrite nanoparticles of 8–10-nm size range with polysaccharide type polymers—sodium alginate or chitosan. Magnetic oxide nanoparticles and the corresponding hybrid materials were characterized by X-ray diffraction (XRD), Mössbauer spectroscopy, atomic absorption spectroscopy (AAS), FTIR spectroscopy, scanning and transmission electron microscopy (SEM and TEM) and specific surface area measurements. The vibrating sample magnetometry confirms the superparamagnetic properties of the synthesized ferrites and hybrids. Using this route, the percent of magnetic nanoparticles retained in chitosan-based hybrid materials is nearly double in comparison with that of sodium alginate–based materials. The biological activity tests on Escherichia coli ATCC 25922, Pseudomonas aeroginosa ATCC 27853, Staphylococcus aureus ATCC 25923 and Candida scotti microorganisms show the non-toxic properties of prepared hybrid materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Azzazy HME, Mansour MMH (2009) In vitro diagnostic prospects of nanoparticles. Clin Chim Acta 403:1–8

    Article  CAS  Google Scholar 

  • Bhumkar DR, Pokharkar VB (2006) Studies on effect of pH on cross-linking of chitosan with sodium tripolyphosphate. AAPS PharmSciTech 7: Article 50. doi:10.1208/pt070250

  • Bolong Y, Caihua N, Cheng X, Changping Z, Bo H (2010) Hydrophobic modification of sodium alginate and its application in drug controlled release. Bioprocess Biosyst Eng 33:457–463

    Article  Google Scholar 

  • Covaliu IC, Georgescu G, Jitaru I, Neamtu J, Malaeru T, Oprea O, Patroi E (2009) Synthesis and characterization of a hydroxyapatite coated magnetite for potential cancer treatment. Rev Chim 60:1254–1257

    CAS  Google Scholar 

  • Covaliu CI, Matei C, Litescu S, Eremia SAM, Stanică N, Diamandescu L, Ianculescu A, Jitaru I, Berger D (2010) Radical scavenger properties of oxide nanoparticles stabilized with biopolymer matrix. Rev Mater Plast 47:5–10

    CAS  Google Scholar 

  • Guo S, Li D, Zhang L, Li J, Wang E (2009) Monodisperse mesoporous superparamagnetic single-crystal magnetite nanoparticles for drug delivery. Biomaterials 30:1881–1889

    Article  CAS  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  CAS  Google Scholar 

  • Hernández R, Zamora-Mora V, Sibaja-Ballestero M, Vega-Baudrit J, Lopez D, Mijangos C (2009) Influence of iron oxide nanoparticles on the rheological properties of hybrid chitosan ferrogels. J Colloid Interf Sci 33:53–59

    Article  Google Scholar 

  • Hui LM, Yu FX, Xian RQ, Yoshie M, Tsuneji N (2008) Superparamagnetic iron oxide nanoparticles stabilized by alginate: Pharmacokinetics, tissue distribution and applications in detecting liver cancers. Int J Pharm 354:217–226

    Article  Google Scholar 

  • Ma H, Qi X, Maitani Y, Negai T (2007) Preparation and characterization of superparamagetic iron oxide nanoparticles stabilized by sodium alginate. Int J Pharm 333:177–186

    Article  CAS  Google Scholar 

  • Ravi Kumar MNV (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27

    Article  Google Scholar 

  • Sanvicens N, Marco MP (2008) Multifactional nanoparticles: properties and prospects for their use in human medicine. Trends Biotechnol 26:425–429

    Article  CAS  Google Scholar 

  • Sun C, Lee JSH, Zhang M (2008) Magnetic nanoparticles in MR imaginig and drug delivery. Adv Drug Deliv Rev 60:1252–1265

    Article  CAS  Google Scholar 

  • Tamaura Y, Buduan PV, Katsura T (1981) Studies in the oxidation of iron (II) ion during formation of Fe304 and a-FeO(OH) by air oxidation of Fe[OH]2 suspensions. J Chem Soc Dalton Trans 1807–1811

  • Vijayakumar R, Koltypin Y, Felner I, Gedanken A (2000) Sonochemical synthesis and characterization of pure nanometer-sized Fe3O4 particles. Mater Sci Eng A 286:101–105

    Article  Google Scholar 

  • Wang L, Shelton RM, Cooper PR, Lawson M, Triffitt JT, Barralet JE (2003) Evaluation of sodium alginate for bone marrow cell tissue engineering. Biomaterials 24:3475–3481

    Article  CAS  Google Scholar 

  • Wang Y, Baoqiang L, Zhou Y, Jia D (2008) Chitosan induced synthesis of magnetite nanoparticles via iron ions assembly. Polym Adv Technol 19:1256–1261

    Article  CAS  Google Scholar 

  • Wen X, Yang J, He B, Gu Z (2007) Preparation of monodisperse magnetite nanoparticles under mild conditions. Curr Appl Phys 8:535–541

    Article  Google Scholar 

Download references

Acknowledgments

Authors recognise financial support from the European Social Fund through POSDRU/89/1.5/S/54785 project: “Postdoctoral Program for Advanced Research” in the field of nanomaterials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horia Iovu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Covaliu, C.I., Berger, D., Matei, C. et al. Magnetic nanoparticles coated with polysaccharide polymers for potential biomedical applications. J Nanopart Res 13, 6169–6180 (2011). https://doi.org/10.1007/s11051-011-0452-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0452-6

Keywords

Navigation