Skip to main content
Log in

Reduction of silver nanoparticles onto graphene oxide nanosheets with N,N-dimethylformamide and SERS activities of GO/Ag composites

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Silver nanoparticles (Ag NPs) have been homogeneously deposited onto graphene oxide (GO) nanosheets by an optimal method, in which N,N-dimethylformamide (DMF) as a co-dispersant of GO and reductant of sliver ions is added to an aqueous suspension of GO and AgNO3. GO nanosheets are uniformly covered by Ag NPs with a narrow size distribution and inter-particle gap. Raman signals of GO are greatly enhanced after deposition owing to the charge transfer interaction of GO with Ag NPs. The GO/Ag composite can be further utilized as an effective surface-enhanced Raman scattering (SERS) active substrate. Several new Raman bands and frequency shifts are clearly observed in using 4-aminothiophenol (4-ATP) as a Raman probe on GO/Ag compared to the normal Raman spectrum of solid 4-ATP. The Raman enhancement arises from a major electromagnetic effect and a minor chemical effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allen MJ, Tung VC, Kaner RB (2009) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145

    Article  Google Scholar 

  • Balapanuru J, Yang JX, Xiao S, Bao QL, Jahan M, Polavarapu L, Wei J, Xu QH, Loh KP (2010) A graphene oxide-organic dye ionic complex with DNA-sensing and optical-limiting properties. Angew Chem Int Ed 49:6549–6553

    Article  CAS  Google Scholar 

  • Campion A, Kambhampati P (1998) Surface-enhanced Raman scattering. Chem Soc Rev 27:241–250

    Article  CAS  Google Scholar 

  • Cao A, Liu Z, Chu S, Wu M, Ye Z, Cai Z, Chang Y, Wang S, Gong Q, Liu Y (2010) A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials. Adv Mater 22:103–106

    Article  CAS  Google Scholar 

  • Chang S, Combs ZA, Gupta MK, Davis R, Tsukruk VV (2010) In situ growth of silver nanoparticles in porous membranes for surface-enhanced Raman scattering. ACS Appl Mater Interfaces 2:3333–3339

    Article  CAS  Google Scholar 

  • Chen W, Yan L (2010) Preparation of graphene by a low-temperature thermal reduction at atmosphere pressure. Nanoscale 2:559–563

    Article  CAS  Google Scholar 

  • Chu H, Wang J, Ding L, Yuan D, Zhang Y, Liu J, Li Y (2009) Decoration of gold nanoparticles on surface-grown single-walled carbon nanotubes for detection of every nanotube by surface-enhanced Raman spectroscopy. J Am Chem Soc 131:14310–14316

    Article  CAS  Google Scholar 

  • Compton OC, Nguyen ST (2010) Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6:711–723

    Article  CAS  Google Scholar 

  • Fu XQ, Bei FL, Wang X, O’Brien S, Lombardi JR (2010) Excitation profile of surface-enhanced Raman scattering in graphene-metal nanoparticle based derivatives. Nanoscale 2:1461–1466

    Article  CAS  Google Scholar 

  • Gao L, Ren W, Liu B, Saito R, Wu ZS, Li S, Jiang C, Li F, Cheng HM (2009a) Surface and interference coenhanced Raman scattering of graphene. ACS Nano 3:933–939

    Article  CAS  Google Scholar 

  • Gao W, Alemany LB, Ci LJ, Ajayan PM (2009b) New insights into the structure and reduction of graphite oxide. Nat Chem 1:403–408

    Article  CAS  Google Scholar 

  • Goncalves G, Marques PAAP, Granadeiro CM, Nogueira HIS, Singh MK, Grácio J (2009) Surface modification of graphene nanosheets with gold nanoparticles: the role of oxygen moieties at graphene surface on gold nucleation and growth. Chem Mater 21:4796–4802

    Article  CAS  Google Scholar 

  • Goncalves G, Marques PAAP, Barros-Timmons A, Bdkin I, Singh MK, Emami N, Gracio J (2010) Graphene oxide modified with PMMA via ATRP as a reinforcement filler. J Mater Chem 20:9927–9934

    Article  CAS  Google Scholar 

  • Hildebrandt P, Stockburger M (1984) Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver. J Phys Chem 88:5935–5944

    Article  CAS  Google Scholar 

  • Huang J, Zhang L, Chen B, Ji N, Chen F, Zhang Y, Zhang Z (2010a) Nanocomposites of size-controlled gold nanoparticles and graphene oxide: formation and applications in SERS and catalysis. Nanoscale 2:2733–2738

    Article  CAS  Google Scholar 

  • Huang X, Zhou XZ, Wu SX, Wei YY, Zhang J, Boey F, Zhang H (2010b) Reduced graphene oxide-templated photochemical synthesis and in situ assembly of Au nanodots to orderly patterned Au nanodot chains. Small 6:513–516

    Article  CAS  Google Scholar 

  • Huang X, Yin ZY, Wu SX, Qi XY, Zhang QC, Yan QY, Boey F, Zhang H (2011a) Graphene-based materials: synthesis, characterization, properties, and applications. Small 7:1876–1902

    Article  CAS  Google Scholar 

  • Huang X, Qi XY, Boey F, Zhang H (2011b) Graphene-based composites. Chem Soc Rev. doi:10.1039/C1CS15078B

  • Huang X, Li SZ, Huang YZ, Wu SX, Zhou XZ, Li SZ, Gan CL, Boey F, Mirkin CA, Zhang H (2011c) Synthesis of hexagonal close-packed gold nanostructures. Nat Commun 2:292

    Article  Google Scholar 

  • Jana NR, Pal T (2007) Anisotropic metal nanoparticles for use as surface-enhanced Raman substrates. Adv Mater 19:1761–1765

    Article  CAS  Google Scholar 

  • Jeong HK, Colakerol L, Jin MH, Glans PA, Smith KE, Lee YH (2008a) Unoccupied electronic states in graphite oxides. Chem Phys Lett 460:499–502

    Article  CAS  Google Scholar 

  • Jeong HK, Lee YP, Lahaye RJWE, Park MH, An KH, Kim IJ, Yang CW, Park CY, Ruoff RS, Lee YH (2008b) Evidence of graphitic AB stacking order of graphite oxides. J Am Chem Soc 130:1362–1366

    Article  CAS  Google Scholar 

  • Jeong HK, Noh HJ, Kim JY, Jin MH, Park CY, Lee YH (2008c) X-ray absorption spectroscopy of graphite oxide. Europhys Lett 82:67004

    Article  Google Scholar 

  • Jiang HJ (2011) Chemical preparation of graphene-based nanomaterials and their applications in chemical and biological sensors. Small. doi:10.1002/smll.201002352

  • Jin R, Cao Y, Mirkin CA, Kelly KL, Schatz GC, Zheng JG (2001) Photoinduced conversion of silver nanospheres to nanoprisms. Science 294:1901–1903

    Article  CAS  Google Scholar 

  • Kim YK, Na HK, Min DH (2010) Influence of surface functionalization on the growth of gold nanostructures on graphene thin films. Langmuir 26:13065–13070

    Article  CAS  Google Scholar 

  • Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (1999) Ultrasensitive chemical analysis by Raman spectroscopy. Chem Rev 99:2957–2976

    Article  CAS  Google Scholar 

  • Kumar S, Anija M, Kamaraju N, Vasu KS, Subrahmanyam KS, Sood AK, Rao CNR (2009) Femtosecond carrier dynamics and saturable absorption in graphene suspensions. Appl Phys Lett 95:191911

    Article  Google Scholar 

  • Lee PC, Meisel D (1983) Surface-enhanced Raman scattering of colloid-stabilizer systems. Chem Phys Lett 99:262–265

    Article  CAS  Google Scholar 

  • Li W, Liang C, Zhou W, Qiu J, Li H, Sun G, Xin Q (2004) Homogeneous and controllable Pt particles deposited on multi-wall carbon nanotubes as cathode catalyst for direct methanol fuel cells. Carbon 42:436–439

    Article  CAS  Google Scholar 

  • Ling X, Xie L, Fang Y, Xu H, Zhang H, Kong J, Dresselhaus MS, Zhang J, Liu Z (2010) Can Graphene be used as a substrate for Raman enhancement? Nano Lett 10:553–561

    Article  CAS  Google Scholar 

  • Liu JC, Bai HW, Wang YJ, Liu ZY, Zhang XW, Sun DD (2010a) Self-assembling TiO2 nanorods on large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalytic applications. Adv Funct Mater 20:4175–4181

    Article  CAS  Google Scholar 

  • Liu Z, Jiang L, Galli F, Nederlof I, Olsthoorn RCL, Lamers GEM, Oosterkamp TH, Abrahams JP (2010b) A graphene oxide˙streptavidin complex for biorecognition—towards affinity purification. Adv Funct Mater 20:2857–2865

    Article  CAS  Google Scholar 

  • Loh KP, Bao Q, Eda G, Chhowalla M (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2:1015–1024

    Article  CAS  Google Scholar 

  • Lu GH, Mao S, Park S, Ruoff RS, Chen JH (2009) Facile, noncovalent decoration of graphene oxide sheets with nanocrystals. Nano Res 2:192–200

    Article  CAS  Google Scholar 

  • Lu G, Li H, Liusman C, Yin ZY, Wu SX, Zhang H (2011) Surface enhanced Raman scattering of Ag or Au nanoparticle-decorated reduced graphene oxide for detection of aromatic molecules. Chem Sci. doi:10.1039/C1SC00254F

  • Mbhele ZH, Salemane MG, van Sittert CGCE, Nedeljković JM, Djoković V, Luyt AS (2003) Fabrication and characterization of silver-polyvinyl alcohol nanocomposites. Chem Mater 15:5019–5024

    Article  CAS  Google Scholar 

  • Mkhoyan KA, Contryman AW, Silcox J, Stewart DA, Eda G, Mattevi C, Miller S, Chhowalla M (2009) Atomic and electronic structure of graphene-oxide. Nano Lett 9:1058–1063

    Article  CAS  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  • Osawa M, Matsuda N, Yoshii K, Uchida I (1994) Charge transfer resonance Raman process in surface-enhanced Raman scattering from p-aminothiophenol adsorbed on silver: Herzberg-Teller contribution. J Phys Chem 98:12702–12707

    Article  CAS  Google Scholar 

  • Paredes JI, Villar-Rodil S, Martínez-Alonso A, Tascón JMD (2008) Graphene oxide dispersions in organic solvents. Langmuir 24:10560–10564

    Article  CAS  Google Scholar 

  • Pasricha R, Gupta S, Srivastava AK (2009) A facile and novel synthesis of Ag-graphene-based nanocomposites. Small 5:2253–2259

    Article  CAS  Google Scholar 

  • Pastoriza-Santos I, Liz-Marzán LM (2009) N,N-Dimethylformamide as a reaction medium for metal nanoparticle synthesis. Adv Funct Mater 19:679–688

    Article  CAS  Google Scholar 

  • Qi XY, Pu KY, Li H, Zhou XZ, Wu SX, Fan QL, Liu B, Boey F, Huang W, Zhang H (2010a) Amphiphilic graphene composites. Angew Chem Int Ed 49:9426–9429

    Article  CAS  Google Scholar 

  • Qi XY, Pu KY, Zhou XZ, Li H, Liu B, Boey F, Huang W, Zhang H (2010b) Conjugated-polyelectrolyte-functionalized reduced graphene oxide with excellent solubility and stability in polar solvents. Small 6:663–669

    Article  CAS  Google Scholar 

  • Schatz GC (1984) Theoretical studies of surface enhanced Raman scattering. Acc Chem Res 17:370–376

    Article  CAS  Google Scholar 

  • Schedin F, Lidorikis E, Lombardo A, Kravets VG, Geim AK, Grigorenko AN, Novoselov KS, Ferrari AC (2010) Surface-enhanced Raman spectroscopy of graphene. ACS Nano 4:5617–5626

    Article  CAS  Google Scholar 

  • Shen JF, Shi M, Li N, Yan B, Ma HW, Hu YZ, Ye MX (2010) Facile synthesis and application of Ag-chemically converted graphene nanocomposite. Nano Res 3:339–349

    Article  CAS  Google Scholar 

  • Si Y, Samulski ET (2008) Exfoliated graphene separated by platinum nanoparticles. Chem Mater 20:6792–6797

    Article  CAS  Google Scholar 

  • Sun L, Song Y, Wang L, Guo C, Sun Y, Liu Z, Li Z (2008) Ethanol-induced formation of silver nanoparticle aggregates for highly active SERS substrates and application in DNA detection. J Phys Chem C 112:1415–1422

    Article  CAS  Google Scholar 

  • Wang Y, Zou X, Ren W, Wang W, Wang E (2007) Effect of silver nanoplates on Raman spectra of p-aminothiophenol assembled on smooth macroscopic gold and silver surface. J Phys Chem C 111:3259–3265

    Article  CAS  Google Scholar 

  • Wei ZQ, Wang DB, Kim S, Kim SY, Hu YK, Yakes MK, Laracuente AR, Dai ZT, Marder SR, Berger C, King WP, de Heer WA, Sheehan PE, Riedo E (2010) Nanoscale tunable reduction of graphene oxide for graphene electronics. Science 328:1373–1376

    Article  CAS  Google Scholar 

  • Xiao T, Ye Q, Sun L (1997) Hunting for the active sites of surface-enhanced Raman scattering: a new strategy based on single silver particles. J Phys Chem B 101:632–638

    Article  CAS  Google Scholar 

  • Xu C, Wang X (2009) Fabrication of flexible metal-nanoparticles film using graphene oxide sheets as substrates. Small 5:2212–2217

    Article  CAS  Google Scholar 

  • Yang YK, Qiu SQ, Xie XL, Wang XB, Li RKY (2010) A facile, green, and tunable method to functionalize carbon nanotubes with water-soluble azo initiators by one-step free radical addition. Appl Surf Sci 256:3286–3292

    Article  CAS  Google Scholar 

  • Zhou XZ, Huang X, Qi XY, Wu SX, Xue C, Boey FYC, Yan QY, Chen P, Zhang H (2009) In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. J Phys Chem C 113:10842–10846

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Science Foundation of China (20804014, 50825301, and 51073050), Chinese Ministry of Education (210131), Hubei Provincial Department of Science & Technology (2009CDA021 and 2010CDB04606), and Wuhan Science & Technology Bureau of China (201050231088). YKY was a Visiting Scholar to and supported by the CAMT at the University of Sydney.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Kui Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, YK., He, CE., He, WJ. et al. Reduction of silver nanoparticles onto graphene oxide nanosheets with N,N-dimethylformamide and SERS activities of GO/Ag composites. J Nanopart Res 13, 5571–5581 (2011). https://doi.org/10.1007/s11051-011-0550-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0550-5

Keywords

Navigation