Skip to main content
Log in

The contribution of synaptic plasticity in the basal ganglia to the processing of visual information

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

A mechanism for the involvement of the basal ganglia in the processing of visual information, based on dopamine-dependent modulation of the efficiency of synaptic transmission in interconnected parallel associative and limbic cortex-basal ganglia-thalamus-cortex circuits, is proposed. Each circuit consists of a visual or prefrontal area of the cortex connected with the thalamic nucleus and the corresponding areas in different nuclei of the basal ganglia. The circulation of activity in these circuits is supported by the recurrent arrival of information in the thalamus and cortex. Dopamine released in response to a visual stimulus modulates the efficiencies of “strong” and “weak” corticostriatal inputs in different directions, and the subsequent reorganization of activity in the circuit leads to disinhibition (inhibition) of the activity of those cortical neurons which are “strongly” (“weakly”) excited by the visual stimulus simultaneously with dopaminergic cells. The pattern in each cortical area is the neuronal reflection of the properties of the visual stimulus processed by this area. Excitation of dopaminergic cells by the visual stimulus via the superior colliculi requires parallel activation of the disinhibitory input to the superior colliculi via the thalamus and the “direct” pathway” in the basal ganglia. The prefrontal cortex, excited by the visual stimulus via the mediodorsal nucleus of the thalamus, mediates the descending influence on the activity of dopaminergic cells, simultaneously controlling dopamine release in different areas of the striatum and thus facilitating the mutual selection of neural reflections of the individual properties of the visual stimulus and their binding into an integral image.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. F. Burchinskaya, V. S. Zelenskaya, V. A. Cherkes, and B. P. Kolomiets, “Pathways for the transmission of visual and auditory information to the caudate nucleus in the cat,” Neirofiziologiya, 19, No. 4, 512–520 (1987).

    Google Scholar 

  2. N. V. Veber, S. Sh. Rapoport, I. G. Sil’kis, and S. S. Sokolov, “Longterm posttetanic changes in the spike responses of visual cortex neurons in the cat,” Zh. Vyssh. Nerv. Deyat., 38, No. 5, 963–965 (1988).

    CAS  Google Scholar 

  3. V. D. Glezer, N. V. Prazdnikova, L. I. Leushina, A. A. Nevskaya, and M. B. Pavlovskaya, Recognition of Visual Objects. Visual Physiology [in Russian], Nauka, Moscow (1992), pp. 466–527.

    Google Scholar 

  4. A. M. Ivanitskii, “A major natural mystery: how brain function generates subjective experiences,” Psikhol. Zh., 20, No. 3, 93–104 (1999).

    Google Scholar 

  5. B. P. Kolomiets, “Electrophysiological studies of the effects of stimulating the pulvinar on caudate nucleus neurons responding to visual stimulation,” Neirofiziologiya, 23, No. 5, 520–529 (1991).

    CAS  Google Scholar 

  6. A. M. Mass and A. Ya. Supin, Functional Organization of the Superior Colliculi in Mammals [in Russian], Nauka, Moscow (1985).

    Google Scholar 

  7. I. N. Pigarev, “Extrastriate visual zones in the cerebral cortex,” in: Visual Physiology [in Russian], Nauka, Moscow (1992), pp. 345–400.

    Google Scholar 

  8. N. S. Podvigin, “Processing of signals in the intermediate and midbrain,” in Visual Physiology [in Russian], Nauka, Moscow (1992), pp. 162–242.

    Google Scholar 

  9. N. V. Prazdnikova, V. D. Glezer, and V. F. Danilova, “Two types of generalization in the evolution of the visual brain,” Zh. Évolyuts. Biokhim. Fiziol., 21, No. 5, 435–442 (1985).

    Google Scholar 

  10. I. G. Sil’kis, “The role of the basal ganglia in generating dreams in paradoxical sleep (a hypothetical mechanism),” Zh. Vyssh. Nerv. Deyat., 56, No. 1, 5–21 (2006).

    CAS  Google Scholar 

  11. I. G. Sil’kis, “The role of the basal ganglia in generating visual hallucinations (a hypothetical mechanism),” Zh. Vyssh. Nerv. Deyat., 55, No. 5, 592–607 (2005).

    CAS  Google Scholar 

  12. I. G. Sil’kis, “A possible mechanism for the role of dopaminergic cells and cholinergic interneurons in the striatum in the conditioned reflex selection of motor activity,” Zh. Vyssh. Nerv. Deyat., 54, No. 6, 734–749 (2004).

    CAS  Google Scholar 

  13. I. G. Sil’kis, “Possible mechanisms of the effects of endogenous neuromodulators on the mutually dependent activity of neurons in the various nuclei of the basal ganglia,” Ros. Fiziol. Zh., 90, No. 3, 282–293 (2004).

    CAS  Google Scholar 

  14. I. G. Sil’kis, “Effects of neuromodulators on synaptic plasticity in dopaminergic structures of the midbrain (a hypothetical mechanism),” Zh. Vyssh. Nerv. Deyat., 53, No. 4, 464–479 (2003).

    CAS  Google Scholar 

  15. I. G. Sil’kis, “Involvement of dopamine in enhancing cortical signals activating NMDA receptors in the striatum (a hypothetical mechanism),” Ros. Fiziol. Zh., 87, No. 12, 1569–1578 (2001).

    CAS  Google Scholar 

  16. I. G. Sil’kis and S. Sh. Rapoport, “Comparative analysis of the latent periods of responses of close-lying neurons in visual cortex microzones,” Zh. Vyssh. Nerv. Deyat., 33, No. 5, 877–884 (1983).

    CAS  Google Scholar 

  17. V. A. Cherkes and V. S. Zelenskaya, “Responses of caudate nucleus neurons to various visual stimuli in actively conscious rats,” Neirofiziologiya, 15, No. 4, 370–376 (1983).

    CAS  Google Scholar 

  18. I. A. Shevelev, “The functional importance of the primary responses of the subcortical visual centers,” Zh. Vyssh. Nerv. Deyat., 21, No. 3, 569–576 (1971).

    CAS  Google Scholar 

  19. V. T. Shuvaev and N. F. Suvorov, The Basal Ganglia and Behavior [in Russian], Nauka, St. Petersburg (2001).

    Google Scholar 

  20. H. D. Abraham and F. H. Duffy, “EEG coherence in post-LSD visual hallucinations,” Psychiatry Res., 107, No. 3, 151–163 (2001).

    Article  PubMed  CAS  Google Scholar 

  21. A. Antal, S. Keri, T. Kincses, J. Kalman, G. Dibo, G. Benedek, Z. Janka, and L. Vecsei, “Corticostriatal circuitry mediates fast-track visual categorization,” Cogn. Brain Res., 13, No. 1, 53–59 (2002).

    Article  Google Scholar 

  22. T. Aosaki, M. Kimura, and A. M. Graybiel, “Temporal and spatial characteristics of tonically active neurons of the primate’s striatum,” J. Neurophysiol., 73, No. 3, 1234–1252 (1995).

    PubMed  CAS  Google Scholar 

  23. H. E. Atallah, M. J. Frank, and R. C. O’Reilly, “Hippocampus, cortex, and basal ganglia: insights from computational models of complementary learning systems,” Neurobiol. Learn. Mem., 82, No. 3, 253–267 (2004).

    Article  PubMed  Google Scholar 

  24. B. J. Baars, “The conscious access hypothesis: origins and recent evidence,” Trends Cogn. Sci., 6, No. 1, 47–52 (2002).

    Article  PubMed  Google Scholar 

  25. E. H. Bertram and D. X. Zhang, “Thalamic excitation of hippocampal CA1_neurons: a comparison with the effects of CA3_stimulation,” Neuroscience, 92, No. 1, 15–26 (1999).

    Article  PubMed  CAS  Google Scholar 

  26. I. Bodis-Wollner, “Neuropsychological and perceptual defects in Parkinson’s disease,” Parkinsonism Relat. Disord., 9, Supplement 2, S83–S89 (2003).

    Article  PubMed  Google Scholar 

  27. C. E. Boudreau and D. Ferster, “Short-term depression in thalamocortical synapses of cat primary visual cortex,” J. Neurosci., 25, No. 31, 7179–7190 (2005).

    Article  PubMed  CAS  Google Scholar 

  28. V. J. Brown, R. Desimone, and M. Mishkin, “Responses of cells in the tail of the caudate nucleus during visual discrimination learning,” J. Neurophysiol., 74, No. 3, 1083–1094 (1995).

    PubMed  CAS  Google Scholar 

  29. L. L. Brown, J. S. Schneider, and T. I. Lidsky, “Sensory and cognitive functions of the basal ganglia,” Curr. Opin. Neurobiol., 7, No. 2, 157–163 (1997).

    Article  PubMed  CAS  Google Scholar 

  30. T. Buttner, W. Kuhn, T. Patzold, and H. Przuntek, “L-Dopa improves colour vision in Parkinson’s disease,” J. Neural Transm. Park. Dis. Dement. Sect., 7, No. 1, 13–29 (1994).

    Article  PubMed  CAS  Google Scholar 

  31. G. G. Celesia, M. G. Brigell, and M. S. Vaphiades, “Hemianopic anosognosia,” Neurology, 49, No. 1, 88–97 (1997).

    PubMed  CAS  Google Scholar 

  32. E. Comoli, V. Coizet, J. Boyes, J. P. Bolam, N. S. Canteras, R. H. Quirk, P. G. Overton, and P. Redgrave, “A direct projection from superior colliculus to substantia nigra for detecting salient visual events,” Nat. Neurosci., 6, No. 9, 974–980 (2003).

    Article  PubMed  CAS  Google Scholar 

  33. F. Crick and C. Koch, “Are we aware of neuronal activity in primary visual cortex?” Nature, 375, No. 625, 121–123 (1995).

    Article  PubMed  CAS  Google Scholar 

  34. J. M. Deniau, A. Menetrey, and S. Charpier, “The lamellar organization of the rat substantia nigra pars reticulata: segregated patterns of striatal afferents and relationship to the topography of corticostriatal projections,” Neuroscience, 73, No. 3, 761–781 (1996).

    Article  PubMed  CAS  Google Scholar 

  35. E. Dommett, V. Coizet, C. D. Blaha, J. Martindale, V. Lefebvre, N. Walton, J. E. Mayhew, P. G. Overton, and P. Redgrave, “How visual stimuli activate dopaminergic neurons at short latency,” Science, 307, No. 5714, 1476–1479 (2005).

    Article  PubMed  CAS  Google Scholar 

  36. N. N. Doron and J. E. Ledoux, “Organization of projections to the lateral amygdala from auditory and visual areas of the thalamus in the rat,” J. Comp. Neurol., 412, No. 3, 383–409 (1999).

    Article  PubMed  CAS  Google Scholar 

  37. M. C. Gaillard and F. X. Borruat, “Persisting visual hallucinations and illusions in previously drug-addicted patients,” Klin. Monatsbl. Augenheilkd., 220, No. 3, 176–178 (2003).

    Article  PubMed  Google Scholar 

  38. J. M. Gimenez-Amaya, S. de las Heras, E. Erro, E. Mengual, and J. L. Lanciego, “Considerations on the thalamostriatal system with some functional implications,” Histol. Histopathol., 15, No. 4, 1285–1292 (2000).

    PubMed  CAS  Google Scholar 

  39. H. J. Groenewegen, Y. Galis-de Graar, and W. J. Smeets, “Integration and segregation of limbic cortico-striatal loops at the thalamic level: an experimental tracing study in rats,” J. Chem. Neuroanat., 16, No. 3, 167–185 (1999).

    Article  PubMed  CAS  Google Scholar 

  40. K. Gurney, T. J. Prescott, and P. Redgrave, “A computational model of action selection in the basal ganglia. II. Analysis and simulation of behaviour,” Biol. Cybern., 84, No. 6, 411–423 (2001).

    Article  PubMed  CAS  Google Scholar 

  41. S. N. Haber, “The primate basal ganglia: parallel and integrative networks,” J. Chem. Neuroanat., 26, No. 4, 317–330 (2003).

    Article  PubMed  Google Scholar 

  42. J. K. Harting, B. V. Updyke, and D. P. Lieshout, “Striatal projections from the cat visual thalamus,” Eur. J. Neurosci., 14, No. 5, 893–896 (2001).

    Article  PubMed  CAS  Google Scholar 

  43. A. J. Heynen and M. F. Bear, “Long-term potentiation of thalamocortical transmission in the adult visual cortex in vivo,” J. Neurosci., 21, No. 24, 9801–9813 (2001).

    PubMed  CAS  Google Scholar 

  44. O. Hikosaka, Y. Takikawa, and R. Kawagoe, “Role of the basal ganglia in the control of purposive saccadic eye movements,” Physiol. Rev., 80, No. 3, 954–978 (2000).

    Google Scholar 

  45. J. C. Horvitz, “Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events,” Neuroscience, 96, No. 3, 651–656 (2000).

    Article  PubMed  CAS  Google Scholar 

  46. M. Inoue, Y. Katsumi, T. Hayashi, T. Mukai, K. Ishizu, K. Hashikawa, H. Saji, and J. Fukuyama, “Sensory stimulation accelerates dopamine release in the basal ganglia,” Brain Res., 1026, No. 2, 179–184 (2004).

    Article  PubMed  CAS  Google Scholar 

  47. J. P. Joseph and D. Boussaoud, “Role of the cat substantia nigra pars reticulata in eye and head movements. I. Neural activity,” Exptl. Brain Res., 57, No. 2, 286–296 (1985).

    CAS  Google Scholar 

  48. B. Kolomiets, “A possible visual pathway to the cat caudate nucleus involving the pulvinar,” Exptl. Brain Res., 97, No. 2, 317–324 (1993).

    CAS  Google Scholar 

  49. R. Lape and J. A. Dani, “Complex response to afferent excitatory bursts by nucleus accumbens medium spiny projection neurons,” J. Neurophysiol., 92, No. 3, 1276–1284 (2004).

    Article  PubMed  Google Scholar 

  50. M.S. Lees, J. O. Rinne, and C. D. Marsden, “The pedunculopontine nucleus: its role in the genesis of movement disorders,” Yonsei Med. J., 41, No. 2, 167–184 (2000).

    Google Scholar 

  51. J. H. Maunsell and J. R. Gibson, “Visual response latencies in striate cortex of the macaque monkey,” J. Neurophysiol., 68, No. 4, 1332–1344 (1992).

    PubMed  CAS  Google Scholar 

  52. N. R. McFarland and S. N. Haber, “Thalamic relay nuclei of the basal ganglia form both reciprocal and nonreciprocal cortical connections, linking multiple frontal cortical areas,” J. Neurosci., 22, No. 18, 8117–8132 (2002).

    PubMed  CAS  Google Scholar 

  53. A. Mele, M. Avena, P. Roullet, R. de Leonibus, S. Mandillo, F. Sargolini, R. Coccurello, and A. Oliveiro, “Nucleus accumbens dopamine receptors in the consolidation of spatial memory,” Behav. Pharmacol., 15, No. 5–6, 423–431 (2004).

    Article  PubMed  CAS  Google Scholar 

  54. M. M. Mesulam, “Dopamine agonists reorient visual exploration away from the neglected hemispace,” Neurology, 51, No. 5, 1395–1398 (1998).

    PubMed  Google Scholar 

  55. F. A. Middleton and P. L. Strick, “Basal-ganglia ’projections’ to the prefrontal cortex of the primate,” Cereb. Cortex, 12, No. 9, 926–935 (2002).

    Article  PubMed  Google Scholar 

  56. F. A. Middleton and P. L. Strick, “Basal ganglia output and cognition: evidence from anatomical, behavioral, and clinical studies,” Brain Cogn., 42, No. 2, 183–200 (2000).

    Article  PubMed  CAS  Google Scholar 

  57. F. A. Middleton and P. L. Strick, “The temporal lobe is a target of output from the basal ganglia,” Proc. Natl. Acad. Sci. USA, 93, No. 16, 8683–8687 (1996).

    Article  PubMed  CAS  Google Scholar 

  58. H. Mollion, J. Ventre-Dominey, P. F. Dominey, and E. Broussolle, “Dissociable effects of dopaminergic therapy on spatial versus nonspatial working memory in Parkinson’s disease,” Neuropsychologia, 41, No. 11, 1442–1451 (2003).

    Article  PubMed  CAS  Google Scholar 

  59. M. F. Montaron, J. M. Deniau, A. Menetrey, J. Glowinski, and A. M. Thierry, “Prefrontal cortex inputs of the nucleus accumbensnigro-thalamic circuit,” Neuroscience, 71, No. 2, 371–382 (1996).

    Article  PubMed  CAS  Google Scholar 

  60. M. H. Munk, L. G. Nowak, P. Girard, N. Chounlamountri, and J. Bullier, “Visual latencies in cytochrome oxidase bands of macaque area V2,” Proc. Natl. Acad. Sci. USA, 92, No. 4, 988–992 (1995).

    Article  PubMed  CAS  Google Scholar 

  61. A. Nagy, G. Eordegh, M. Norita, and G. Benedek, “Visual receptive field properties of excitatory neurons in the substantia nigra,” Neuroscience, 130, No. 2, 513–518 (2005).

    Article  PubMed  CAS  Google Scholar 

  62. A. Nagy, G. Eordegh, M. Norita, and G. Benedek, “Visual receptive field properties of neurons in the caudate nucleus,” Eur. J. Neurosci., 18, No. 2, 449–452 (2003).

    Article  PubMed  Google Scholar 

  63. T. Niida, B. E. Stain, and J. G. McHaffie, “Response properties of corticotectal and corticostriatal neurons in the posterior lateral suprasylvian cortex of the cat,” J. Neurosci., 17, No. 21, 8550–8565 (1997).

    PubMed  CAS  Google Scholar 

  64. A. Parent and L. N. Hazrati, “Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop,” Brain Res. Rev., 20, No. 1, 91–127 (1995).

    Article  PubMed  CAS  Google Scholar 

  65. A. Parent and L. N. Hazrati, “Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry,” Brain Res. Rev., 20, No. 1, 128–154 (1995).

    Article  PubMed  CAS  Google Scholar 

  66. M. Just Price, R. G. Feldman, D. Adelberg, and H. Kayne, “Abnormalities in color vision and contrast sensitivity in Parkinson’s disease,” Neurology, 42, No. 4, 887–890 (1992).

    Google Scholar 

  67. A. Priori, C. Cinnante, S. Genitrini, A. Pesenti, G. Tortora, C. Bencini, M. V. Barelli, V. Buonamici, F. Carella, F. Girotti, P. Soliveri, F. Magrini, A. Morganti, A. Albanese, S. Broggi, G. Scarlato, and S. Barbieri, “Non-motor effects of deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: preliminary physiological results,” Neurol. Sci., 22, No. 1, 85–86 (2001).

    Article  PubMed  CAS  Google Scholar 

  68. I. Rektor, M. Bares, M. Brazdil, P. Kanovsky, I. Rektorova, D. Sochurkova, D. Kubova, R. Kuba, and P. Daniel, “Cognitive-and movement-related potentials recorded in the human basal ganglia,” Mov. Disord., 20, No. 5, 562–568 (2005).

    Article  PubMed  Google Scholar 

  69. J. Ribas, J. M. Delgado-Garcia, A. Lopez-Beltran, and D. Mir, “A morphological and electrophysiological study of nigrotectal pathway in the rat,” Rev. Esp. Fisiol., 37, No. 1, 45–52 (1981).

    PubMed  CAS  Google Scholar 

  70. R. L. Rodnitzky, “Visual dysfunction in Parkinson’s disease,” Clin. Neurosci., 5, No. 2, 102–106 (1998).

    PubMed  CAS  Google Scholar 

  71. A. F. Sadikot, A. Arent, Y. Smith, and J. P. Bolam, “Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: a light and electron microscopic study of the thalamostriatal projection in relation to striatal heterogeneity,” J. Comp. Neurol., 320, No. 2, 228–242 (1992).

    Article  PubMed  CAS  Google Scholar 

  72. M. T. Schmolesky, Y. Wang, D. P. Hanes, K. G. Thompson, S. Leutgeb, J. D. Schall, and A. G. Leventhal, “Signal timing across the macaque visual system,” J. Neurophysiol., 79, No. 6, 3272–3278 (1998).

    PubMed  CAS  Google Scholar 

  73. J. S. Schneider, “Basal ganglia role in behavior: importance of sensory gating and its relevance to psychiatry,” Biol. Psychiatry, 19, No. 12, 1693–1710 (1984).

    PubMed  CAS  Google Scholar 

  74. U. Schroeder, A. Kueler, A. Hennenlotter, B. Haslinger, V. M. Tronnier, M. Krause, R. Pfister, R. Sprengelmayer, K. W. Lange, and A. O. Ceballos-Baumann, “Facial expression recognition and subthalamic nucleus stimulation,” J. Neurol. Neurosurg. Psychiatry, 75, No. 4, 648–650 (2004).

    Article  PubMed  CAS  Google Scholar 

  75. W. Schultz and R. Romo, “Dopamine neurons of the monkey midbrain: contingencies of responses to stimuli eliciting immediate behavioral reactions,” J. Neurophysiol., 63, No. 3, 607–624 (1990).

    PubMed  CAS  Google Scholar 

  76. H. Sherk and K. A. Mulligan, “Retinotopic order is surprisingly good within cell columns in the cat’s lateral suprasylvian cortex,” Exptl. Brain Res., 91, No. 1, 46–60 (1992).

    CAS  Google Scholar 

  77. S. M. Sherman and R. W. Guillery, “The role of the thalamus in the flow of information to the cortex,” Phil. Trans. Roy. Soc. Lond., B. Biological Sciences, 357, No. 428, 1695–1708 (2002).

    Article  Google Scholar 

  78. I. A. Shevelev, N. A. Lazareva, G. A. Sharaev, R. V. Novikova, and A. S. Tikhomirov, “Interrelation of tuning characteristics to bar, cross and corner in striate neurons,” Neuroscience, 88, No. 1, 17–25 (1999).

    Article  PubMed  CAS  Google Scholar 

  79. M. Sidibe and Y. Smith, “Differential synaptic innervation of striatofugal neurones projecting to the internal or external segments of the globus pallidus by thalamic afferents in the squirrel monkey,” J. Comp. Neurol., 365, No. 3, 445–465 (1996).

    Article  PubMed  CAS  Google Scholar 

  80. H. Tokuno, M. Takada, Y. Kondo, and N. Mizuno, “Laminar organization of the substantia nigra pars reticulata in the macaque monkey, with special reference to the caudato-nigro-tectal link,” Exptl. Brain Res., 92, No. 3, 545–548 (1993).

    CAS  Google Scholar 

  81. Z. Y. Tong, P. G. Overton, and D. Clark, “Stimulation of the prefrontal cortex in the rat induces patterns of activity in midbrain dopaminergic neurons which resemble natural burst events,” Synapse, 22, No. 3, 195–208 (1996).

    Article  PubMed  CAS  Google Scholar 

  82. F. J. Varedas, F. J. Vico, and J. M. Alonso, “Factors determining the precision of the correlated firing generated by a monosynaptic connection in the cat visual pathway,” J. Physiol., 567, No. 3, 1057–1078 (2005).

    Article  Google Scholar 

  83. L. Wang, Y. Kuroiwa, M. Li, J. Wag, and T. Kamitani, “Do Pl and Nl evoked by the ERP task reflect primary visual processing in Parkinson’s disease?” Doc. Ophthalmol., 102, No. 2, 83–93 (2001).

    Article  PubMed  CAS  Google Scholar 

  84. J. Yelnik, “Functional anatomy of the basal ganglia,” Mov. Disord., 17,Supplement 3, S15–S21 (2002).

    Article  PubMed  Google Scholar 

  85. M. T. Zagami, M. E. Montalbano, M. Sabatino, and V. La Grutta, “Effect of acetylcholine and dopamine iontophoretically applied on the sensory responsive caudate unit,” Arch. Int. Physiol. Biochim., 94, No. 5, 305–316 (1986).

    PubMed  CAS  Google Scholar 

  86. S. Zeki, “Localization and globalization in conscious vision,” Ann. Rev. Neurosci., 24, 57–86 (2001).

    Article  PubMed  CAS  Google Scholar 

  87. S. Zeki and A. Bartels, “The autonomy of the visual systems and the modularity of conscious vision,” Phil. Trans. Roy. Soc. Lond., B. Biological Sciences, 353, No. 1377, 1911–1914 (1998).

    Article  CAS  Google Scholar 

  88. C. F. Zink, G. Pagnoni, M. E. Martin, M. Dhamala, and G. S. Berns, “Human striatal response to salient nonrewarding stimuli,” J. Neurosci., 23, No. 22, 8092–8097 (2003).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 56, No. 6, pp. 742–756, November–December, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sil’kis, I.G. The contribution of synaptic plasticity in the basal ganglia to the processing of visual information. Neurosci Behav Physiol 37, 779–790 (2007). https://doi.org/10.1007/s11055-007-0082-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-007-0082-8

Key words

Navigation