Skip to main content

Advertisement

Log in

Mitigation of radiation-induced optic neuropathy in rats by ACE inhibitor ramipril: importance of ramipril dose and treatment time

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose

Radiation-induced optic nerve damage was reduced by ramipril, a prodrug angiotensin-converting enzyme inhibitor (ACEI). This study was to determine the optimum dose and administration time of ramipril for mitigating radiation-induced optic neuropathy.

Materials and method

Adult Fischer 344 male rats were treated with a single dose radiation 30 Gy by using radiosurgical technique. After irradiation, the animals were randomly assigned into groups of different ramipril doses and administration time; control (no treatment), radiation alone, radiation + ramipril in different doses and starting times of drug. Ramipril was given 0.5–1.5 mg/kg/day and AT1R blocker Losartan 20 mg/kg/day in drinking water for 180 days. Functional endpoint with visual evoked potential (VEP) and anatomical endpoint with gross and histological analysis with immunohistochemical (IHC) stain were used.

Results

Normal VEP measurements in un-irradiated rats were 46.2 ± 7.9 ms. There was no change of VEP value until 4 months, but was lengthened to 188.1 ± 58.7 ms at 6 months after radiation. By ramipril treatment with the dose of 1.5 mg starting at 2 weeks after radiation, VEP was significantly shortened to 105.7 ± 88.5 ms at 6 months. Gross and microscopic structure of the irradiated optic nerve was well preserved in the ramipril-treated group.

Conclusion

Ramipril can mitigate the radiation-induced optic nerve damage and preserve the functional integrity of the nerve. The results support early treatment with a high dose of ramipril after radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. van der Kogel AJ (1991) Central nervous system injury in small animal models. In: Gutin RH, Leibel SA, Sheline GE (eds) Radiation injury to the nervous system. Raven Press, New York, pp 91–111

    Google Scholar 

  2. Hopewell JW (1998) Radiation injury to the central nervous system. Med Ped Oncol Suppl 1:1–9

    Article  Google Scholar 

  3. Tofilon PJ, Fike JR (2000) The radioresponse of the central nervous system: a dynamic process. Radiation Res 153:357–370

    Article  PubMed  CAS  Google Scholar 

  4. Raju U, Gumin GJ, Tofilon PJ (2000) Radiation-induced transcription factor activation in rat cerebral cortex. Int J Radiat Biol 76:1045–1053

    Article  PubMed  CAS  Google Scholar 

  5. Belka C, Budach W, Kortmann RD, Bamberg M (2001) Radiation-induced CNS toxicity – molecular and cellular mechanisms. Br J Cancer 85:1233–1239

    Article  PubMed  CAS  Google Scholar 

  6. Tsao MN, Li YQ, Lu G, Yu X, Wong CS (1999) Upregulation of vascular endothelial growth factor is associated with radiation-induced blood–spinal cord barrier disruption. J Neuropath Exp Neurol 58:1051–1060

    Article  PubMed  CAS  Google Scholar 

  7. Logan A, Berry M (1993) Transforming growth factor β1 and basic fibroblast growth factor in the injured CNS. Trends Pharmacol Sci 14:337–343

    Article  PubMed  CAS  Google Scholar 

  8. Chiang CS, Hong JH, Stadler A, Sun JR, Withers HR, McBride WH (1997) Delayed molecular responses to brain irradiation. Int J Radiat Biol 72:45–53

    Article  PubMed  CAS  Google Scholar 

  9. Ryu S, Brown SL, Kolozsvary A, Ewing JR, Kim JH (2002) Non-invasive detection of radiation-induced optic neuropathy by manganese-enhanced MRI. Radiat Res 157:500–505

    Article  PubMed  CAS  Google Scholar 

  10. Kim JH, Brown SL, Kolozsvary A, Jenrow KA, Ryu S, Rosenblum ML, Carretero OA (2004) Neuroprotective effect of ramipril, inhibitor of angiotensin converting enzyme, on the radiation-induced optic neuropathy in the rat. Radiat Res 161:137–142

    Article  PubMed  CAS  Google Scholar 

  11. Kim JH, Khil MS, Kolozsvary A, Guiterez JA,Brown SL (1999) Fractionated radiosurgery for 9L gliosarcoma in the rat brain. Int J Rad Onc Biol Phys 45:1035–1040

    Article  CAS  Google Scholar 

  12. Eitan S, Soloman A, Lavie V, Yoles E, Hirschberg DL, Belkin M, Schwartz M (1994) Recovery of visual response of injured adult rat optic nerves treated with transglutaminase. Science 264:1764–1768

    Article  PubMed  CAS  Google Scholar 

  13. Ryu S, Gorty S, Kazee AM, Bogart J, Aronowitz J, Dalal P, Hahn S, Chung CT, Sagerman RH (2000) “Full dose” re-irradiation of human cervical spinal cord. Am J Clin Oncol 23:29–31

    Article  PubMed  CAS  Google Scholar 

  14. Jackson EK, Garrison JC (1996) Renin and angiotensin. In: Hardman JG, Limbird LE (eds) Goodman and Gilman’s The Pharmacological Basis of Therapeutics, 9th edn. McGraw-Hill, p 745

  15. Nordstroem M, Abrahamsson T, Ervik M, Forshult E, Regaardh CG (1993) Central nervous and systemic kinetics of ramipril and ramiprilat in the conscious dog. J Pharmacol Exp Ther 266:147–152

    CAS  Google Scholar 

  16. Moriguchi Y, Matsubara H, Moni H (1999) Augiotensin II induced transactivation of epidermal growth factor receptor regulates fibronectin and TGF-β synthesis via transcriptional and post-transcriptional mechanisms. Cir Res 84:1073–1084

    CAS  Google Scholar 

  17. Zhang X, O’Malley Y, Robbins MEC (1999) Angiotensin II-induced modulation of rat mesangial cell phenotype. Radiat Res 151:725–735

    Article  PubMed  CAS  Google Scholar 

  18. Castren E, Saavedra JM (1988) Repeated stress increases the density of angiotensin II binding sites in rat paraventricular nucleus and subfornical organ. Endocrinology 122:370–372

    Article  PubMed  CAS  Google Scholar 

  19. Hirasawa R, Hashimoto K, Ota Z (1990) Role of central angiotensinergic mechanism in shaking stress-induced ACTH and catecholamine secretion. Brain Res 533:1–5

    Article  PubMed  CAS  Google Scholar 

  20. Valentino RJ (1989) Corticotropin-releasing factor: putative neurotransmitter in the noradrenergic nucleus locus ceruleus. Psychopharmac Bull 25:306–311

    CAS  Google Scholar 

  21. Aguilera G, Kiss A, Lu X (1995) Increased expression of type 1 angiotensin II receptors in the hypothalamic paraventricular nucleus following stress and glucocorticoid administration. J Neuroendocr 7:775–783

    Article  CAS  Google Scholar 

  22. Lenkei Z, Palkivits M, Corvol P, Llorens-Corte`s C (1997) Expression of angiotensin type-1 (AT1) and type-2 (AT2) receptor mRNAs in the adult rat brain: a functional neuroanatomical review. Front Neuroendocr 18:383–439

    Article  CAS  Google Scholar 

  23. Ward WF, Solliday HH, Molteni A, Port CD (1983) Radiation injury in a rat lung II. Angiotensin converting enzyme activity. Radiat Res 96:294–300

    Article  PubMed  CAS  Google Scholar 

  24. Ward WF, Molteni A, Ts’ao CH, Kim YT, Hing JM (1992) Radiation pneumotoxicity in rats: modification by inhibitors of angiotensin-converting enzyme. Int J Rad Oncol Biol Phys 22:623–625

    CAS  Google Scholar 

  25. Cohen EP, Fish BL, Moulder JE (1997) Successful brief captopril treatment in experimental radiation nephropathy. J Lab Clin Med 129:536–547

    Article  PubMed  CAS  Google Scholar 

  26. Moulder JE, Fish BL, Cohen EP (1998) Radiation nephropathy is treatable with an angiotensin II type 1 (AT1) receptor antagonist. Radiother Oncol 46:307–315

    Article  PubMed  CAS  Google Scholar 

  27. Lindberg H, Nielsen D, Jensen BV, Eriksen J, Skovsgaard T (2004) Angiotensin converting enzyme inhibitors for cancer treatment? Acta Oncol 43:142–152

    Article  PubMed  CAS  Google Scholar 

  28. Jullerat-Jeanneret L, Celerier J, Chapuis BC, Nguyen G, Wostl W, Maerki HP, Janzer RC, Corvol P, Gasc JM (2004) Renin and angiotensinogen expression and functions in growth and apoptosis of human glioblastoma. Br J Cancer 90:1059–1068

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported by RSNA Faculty Grant #SD0325 (to SR) and NIH 1U19AI067734-010005 (to JHK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Ryu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryu, S., Kolozsvary, A., Jenrow, K.A. et al. Mitigation of radiation-induced optic neuropathy in rats by ACE inhibitor ramipril: importance of ramipril dose and treatment time. J Neurooncol 82, 119–124 (2007). https://doi.org/10.1007/s11060-006-9256-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-006-9256-4

Keywords

Navigation