Skip to main content

Advertisement

Log in

Valproic acid induces p21 and topoisomerase-II (α/β) expression and synergistically enhances etoposide cytotoxicity in human glioblastoma cell lines

  • Lab. Investigation-Human/Animal Tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Object

Etoposide, a topoisomerase-II inhibitor promotes DNA damage and apoptosis of cancer cells. In this study, we have examined the ability of the histone deacetylase inhibitor, valproic acid (VPA) to modulate gene expression and sensitize glioblastoma cell lines to the cytotoxic effects of etoposide in vitro.

Methods

The effect of VPA and etoposide alone or a combination of the two drugs on the growth of three different glioblastoma cell lines (U87, LN18, and U251) were measured by MTT assays. Drug treated cells were analyzed for their cell cycle profile, gene expression, differentiation status, and induction of apoptosis by flow-cytometry, western blotting, immunofluorescence assays, and caspase activity measurements.

Results

We observed that while VPA and etoposide independently inhibited the growth of U87, U251, and LN18 cells, exposure of tumor cells to both drugs significantly enhanced the cytotoxicity of etoposide in all cell lines. VPA promoted a G1 accumulation of U87, while an increase in the G2/M population of U251 and LN18 cells was observed upon exposure to the drug. Treatment with etoposide resulted in a G2/M arrest of U87, U251, and LN18 cells, whereas, exposure to both drugs increased the fraction of cells with a G2/M and sub-G1 DNA content. Further, VPA and not etoposide, promoted acetylation of histone H4 and induced the expression of the cyclin-dependent kinase inhibitor (CDKI), p21/WAF1. VPA also up-regulated the expression of the α and β isoforms of topoisomerase-II, as well as the glial differentiation marker, glial fibrillary acidic protein. Finally, a significant increase in caspase-3 activity and apoptosis was observed in the presence of both VPA and etoposide compared to either agent alone.

Conclusion

Our study demonstrates that VPA sensitizes U87, U251, and LN18 cells to the cytotoxic effects of etoposide in vitro by inducing differentiation and up-regulating the expression of p21/WAF1 and both isoforms of topoisomerase-II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hanada R, Inaba T, Yaginuma A, Hayashi Y, Yamamoto K, Nishimoto H, Tsukiyama T (1989) [Effect of high-dose cyclophosphamide plus high-dose etoposide in malignant brain tumors of children followed by autologous bone marrow rescue]. Gan To Kagaku Ryoho 16:263–268

    PubMed  CAS  Google Scholar 

  2. Leo E, Schlegel PG, Lindemann A (1997) Chemotherapeutic induction of long-term remission in metastatic medulloblastoma. J Neurooncol 32:149–154

    Article  PubMed  CAS  Google Scholar 

  3. Kageji T, Nagahiro S, Horiguchi H, Watanabe T, Suzuya H, Okamoto Y, Kuroda Y (2003) Successful high-dose chemotherapy for widespread neuroaxis dissemination of an optico-hypothalamic juvenile pilocytic astrocytoma in an infant: a case report. J Neurooncol 62:281–287

    Article  PubMed  Google Scholar 

  4. Postmus PE, Mulder NH, Sleijfer DT, Meinesz AF, Vriesendorp R, de Vries EG (1984) High-dose etoposide for refractory malignancies: a phase I study. Cancer Treat Rep 68:1471–1474

    PubMed  CAS  Google Scholar 

  5. Parney IF, Chang SM (2003) Current chemotherapy for glioblastoma. Cancer J 9:149–156

    Article  PubMed  CAS  Google Scholar 

  6. Yin D, Tamaki N, Parent AD, Zhang JH (2005) Insulin-like growth factor-I decreased etoposide-induced apoptosis in glioma cells by increasing bcl-2 expression and decreasing CPP32 activity. Neurol Res 27:27–35

    Article  PubMed  CAS  Google Scholar 

  7. El-Deiry WS (2003) The role of p53 in chemosensitivity and radiosensitivity. Oncogene 22:7486–7495

    Article  PubMed  CAS  Google Scholar 

  8. Wu GS, El-Diery WS (1996) p53 and chemosensitivity. Nat Med 2:255–256

    Article  PubMed  CAS  Google Scholar 

  9. Valkov NI, Sullivan DM (2003) Tumor p53 status and response to topoisomerase II inhibitors. Drug Resist Updat 6:27–39

    Article  PubMed  CAS  Google Scholar 

  10. Kim EH, Kim HS, Kim SU, Noh EJ, Lee JS, Choi KS (2005) Sodium butyrate sensitizes human glioma cells to TRAIL-mediated apoptosis through inhibition of Cdc2 and the subsequent downregulation of survivin and XIAP. Oncogene 24:6877–6889

    Article  PubMed  CAS  Google Scholar 

  11. Kim TY, Zhong S, Fields CR, Kim JH, Robertson KD (2006) Epigenomic profiling reveals novel and frequent targets of aberrant DNA methylation-mediated silencing in malignant glioma. Cancer Res 66:7490–7501

    Article  PubMed  CAS  Google Scholar 

  12. Yin D, Ong JM, Hu J, Desmond JC, Kawamata N, Konda BM, Black KL, Koeffler HP (2007) Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor: effects on gene expression and growth of glioma cells in vitro and in vivo. Clin Cancer Res 13:1045–1052

    Article  PubMed  CAS  Google Scholar 

  13. Minucci S, Pelicci PG (2006) Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6:38–51

    Article  PubMed  CAS  Google Scholar 

  14. Eyupoglu IY, Hahnen E, Trankle C, Savaskan NE, Siebzehnrubl FA, Buslei R, Lemke D, Wick W, Fahlbusch R, Blumcke I (2006) Experimental therapy of malignant gliomas using the inhibitor of histone deacetylase MS-275. Mol Cancer Ther 5:1248–1255

    Article  PubMed  Google Scholar 

  15. Wetzel M, Premkumar DR, Arnold B, Pollack IF (2005) Effect of trichostatin A, a histone deacetylase inhibitor, on glioma proliferation in vitro by inducing cell cycle arrest and apoptosis. J Neurosurg 103:549–556

    PubMed  Google Scholar 

  16. Entin-Meer M, Rephaeli A, Yang X, Nudelman A, VandenBerg SR, Haas-Kogan DA (2005) Butyric acid prodrugs are histone deacetylase inhibitors that show antineoplastic activity and radiosensitizing capacity in the treatment of malignant gliomas. Mol Cancer Ther 4:1952–1961

    Article  PubMed  CAS  Google Scholar 

  17. Chapman A, Keane PE, Meldrum BS, Simiand J, Vernieres JC (1982) Mechanism of anticonvulsant action of valproate. Prog Neurobiol 19:315–359

    Article  PubMed  CAS  Google Scholar 

  18. Davis R, Peters DH, McTavish D (1994) Valproic acid. A reappraisal of its pharmacological properties and clinical efficacy in epilepsy. Drugs 47:332–372

    PubMed  CAS  Google Scholar 

  19. Driever PH, Knupfer MM, Cinatl J, Wolff JE (1999) Valproic acid for the treatment of pediatric malignant glioma. Klin Padiatr 211:323–328

    Article  PubMed  CAS  Google Scholar 

  20. Witt O, Schweigerer L, Driever PH, Wolff J, Pekrun A (2004) Valproic acid treatment of glioblastoma multiforme in a child. Pediatr Blood Cancer 43:181

    Article  PubMed  Google Scholar 

  21. Hanson JA, Bentley DP, Bean EA, Nute SR, Moore JL (1991) In vitro chemosensitivity testing in chronic lymphocytic leukaemia patients. Leuk Res 15:565–569

    Article  PubMed  CAS  Google Scholar 

  22. Su X, Gopalakrishnan V, Stearns D, Aldape K, Lang FF, Fuller G, Snyder E, Eberhart CG, Majumder S (2006) Abnormal expression of REST/NRSF and Myc in neural stem/progenitor cells causes cerebellar tumors by blocking neuronal differentiation. Mol Cell Biol 26:1666–1678

    Article  PubMed  CAS  Google Scholar 

  23. Kagan VE, Gleiss B, Tyurina YY, Tyurin VA, Elenstrom-Magnusson C, Liu SX, Serinkan FB, Arroyo A, Chandra J, Orrenius S, Fadeel B (2002) A role for oxidative stress in apoptosis: oxidation and externalization of phosphatidylserine is required for macrophage clearance of cells undergoing Fas-mediated apoptosis. J Immunol 169:487–499

    PubMed  CAS  Google Scholar 

  24. Yang H, Hoshino K, Sanchez-Gonzalez B, Kantarjian H, Garcia-Manero G (2005) Antileukemia activity of the combination of 5-aza-2′-deoxycytidine with valproic acid. Leuk Res 29:739–748

    Article  PubMed  CAS  Google Scholar 

  25. Stockhausen MT, Sjolund J, Manetopoulos C, Axelson H (2005) Effects of the histone deacetylase inhibitor valproic acid on Notch signalling in human neuroblastoma cells. Br J Cancer 92:751–759

    Article  PubMed  CAS  Google Scholar 

  26. Li XN, Shu Q, Su JM, Perlaky L, Blaney SM, Lau CC (2005) Valproic acid induces growth arrest, apoptosis, and senescence in medulloblastomas by increasing histone hyperacetylation and regulating expression of p21Cip1, CDK4, and CMYC. Mol Cancer Ther 4:1912–1922

    Article  PubMed  CAS  Google Scholar 

  27. Yoo EJ, Chung JJ, Choe SS, Kim KH, Kim JB (2006) Down-regulation of histone deacetylases stimulates adipocyte differentiation. J Biol Chem 281:6608–6615

    Article  PubMed  CAS  Google Scholar 

  28. Wolff JE, Finlay JL (2004) High-dose chemotherapy in childhood brain tumors. Onkologie 27:239–245

    Article  PubMed  CAS  Google Scholar 

  29. Hake SB, Xiao A, Allis CD (2004) Linking the epigenetic ‘language’ of covalent histone modifications to cancer. Br J Cancer 90:761–769

    Article  PubMed  CAS  Google Scholar 

  30. Johnstone RW (2002) Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov 1:287–299

    Article  PubMed  CAS  Google Scholar 

  31. Dokmanovic M, Marks PA (2005) Prospects: histone deacetylase inhibitors. J Cell Biochem 96:293–304

    Article  PubMed  CAS  Google Scholar 

  32. Takai N, Kawamata N, Gui D, Said JW, Miyakawa I, Koeffler HP (2004) Human ovarian carcinoma cells: histone deacetylase inhibitors exhibit antiproliferative activity and potently induce apoptosis. Cancer 101:2760–2770

    Article  PubMed  CAS  Google Scholar 

  33. Peart MJ, Smyth GK, van Laar RK, Bowtell DD, Richon VM, Marks PA, Holloway AJ, Johnstone RW (2005) Identification and functional significance of genes regulated by structurally different histone deacetylase inhibitors. Proc Natl Acad Sci USA 102:3697–3702

    Article  PubMed  CAS  Google Scholar 

  34. Tsai SC, Valkov N, Yang WM, Gump J, Sullivan D, Seto E (2000) Histone deacetylase interacts directly with DNA topoisomerase II. Nat Genet 26:349–353

    Article  PubMed  CAS  Google Scholar 

  35. Kurz EU, Wilson SE, Leader KB, Sampey BP, Allan WP, Yalowich JC, Kroll DJ (2001) The histone deacetylase inhibitor sodium butyrate induces DNA topoisomerase II alpha expression and confers hypersensitivity to etoposide in human leukemic cell lines. Mol Cancer Ther 1:121–131

    PubMed  CAS  Google Scholar 

  36. Marchion DC, Bicaku E, Daud AI, Richon V, Sullivan DM, Munster PN (2004) Sequence-specific potentiation of topoisomerase II inhibitors by the histone deacetylase inhibitor suberoylanilide hydroxamic acid. J Cell Biochem 92:223–237

    Article  PubMed  CAS  Google Scholar 

  37. Marin-Husstege M, Muggironi M, Liu A, Casaccia-Bonnefil P (2002) Histone deacetylase activity is necessary for oligodendrocyte lineage progression. J Neurosci 22:10333–10345

    PubMed  CAS  Google Scholar 

  38. Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage FH (2004) Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci USA 101:16659–16664

    Article  PubMed  CAS  Google Scholar 

  39. Asklund T, Appelskog IB, Ammerpohl O, Ekstrom TJ, Almqvist PM (2004) Histone deacetylase inhibitor 4-phenylbutyrate modulates glial fibrillary acidic protein and connexin 43 expression, and enhances gap-junction communication, in human glioblastoma cells. Eur J Cancer 40:1073–1081

    Article  PubMed  CAS  Google Scholar 

  40. Marchion DC, Bicaku E, Turner JG, Daud AI, Sullivan DM, Munster PN (2005) Synergistic interaction between histone deacetylase and topoisomerase II inhibitors is mediated through topoisomerase IIbeta. Clin Cancer Res 11:8467–8475

    Article  PubMed  CAS  Google Scholar 

  41. Tews DS, Fleissner C, Tiziani B, Gaumann AK (2001) Intrinsic expression of drug resistance-associated factors in meningiomas. Appl Immunohistochem Mol Morphol 9:242–249

    Article  PubMed  CAS  Google Scholar 

  42. Takano H, Kohno K, Matsuo K, Matsuda T, Kuwano M (1992) DNA topoisomerase-targeting antitumor agents and drug resistance. Anticancer Drugs 3:323–330

    Article  PubMed  CAS  Google Scholar 

  43. Wang Q, Zambetti GP, Suttle DP (1997) Inhibition of DNA topoisomerase II alpha gene expression by the p53 tumor suppressor. Mol Cell Biol 17:389–397

    PubMed  Google Scholar 

  44. Clifford B, Beljin M, Stark GR, Taylor WR (2003) G2 arrest in response to topoisomerase II inhibitors: the role of p53. Cancer Res 63:4074–4081

    PubMed  CAS  Google Scholar 

  45. Kim MS, Blake M, Baek JH, Kohlhagen G, Pommier Y, Carrier F (2003) Inhibition of histone deacetylase increases cytotoxicity to anticancer drugs targeting DNA. Cancer Res 63:7291–7300

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. Joya Chandra, Peter Zage, Neeta Kang, and Jason Long for their technical help and critical reading of the manuscript. This work was supported in part by funds from The Children’s Brain Tumor Foundation to VG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vidya Gopalakrishnan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, C.M., Aguilera, D., Vasquez, H. et al. Valproic acid induces p21 and topoisomerase-II (α/β) expression and synergistically enhances etoposide cytotoxicity in human glioblastoma cell lines. J Neurooncol 85, 159–170 (2007). https://doi.org/10.1007/s11060-007-9402-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-007-9402-7

Keywords

Navigation