Skip to main content

Advertisement

Log in

Hyperoxia retards growth and induces apoptosis, changes in vascular density and gene expression in transplanted gliomas in nude rats

  • lab Invastigation-human/animal tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

This study describes the biological effects of hyperoxic treatment on BT4C rat glioma xenografts in vivo with special reference to tumor growth, angiogenesis, apoptosis, general morphology and gene expression parameters.

One group of tumor bearing animals was exposed to normobaric hyperoxia (1 bar, pO2 = 1.0) and another group was exposed to hyperbaric hyperoxia (2 bar, pO2 = 2.0), whereas animals housed under normal atmosphere (1 bar, pO2 = 0.2) served as controls. All treatments were performed at day 1, 4 and 7 for 90 min. Treatment effects were determined by assessment of tumor growth, vascular morphology (immunostaining for von Willebrand factor), apoptosis by TUNEL staining and cell proliferation by Ki67 staining. Moreover, gene expression profiles were obtained and verified by real time quantitative PCR.

Hyperoxic treatment caused a ∼60% reduction in tumor growth compared to the control group after 9 days (p < 0.01). Light microscopy showed that the tumors exposed to hyperoxia contained large “empty spaces” within the tumor mass. Moreover, hyperoxia induced a significant increase in the fraction of apoptotic cells (∼21%), with no significant change in cell proliferation. After 2 bar treatment, the mean vascular density was reduced in the central parts of the tumors compared to the control and 1 bar group. The vessel diameters were significantly reduced (11–24%) in both parts of the tumor tissue. Evidence of induced cell death and reduced angiogenesis was reflected by gene expression analyses.

Increased pO2−levels in experimental gliomas, using normobaric and moderate hyperbaric oxygen therapy, caused a significant reduction in tumor growth. This process is characterized by enhanced cell death, reduced vascular density and changes in gene expression corresponding to these effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 1:6449–6465 (Review)

    Google Scholar 

  2. Höckel M, Vaupel P (2001) Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 21:266–276 (Review)

    Article  Google Scholar 

  3. Brizel DM, Lin S, Johnson JL, Brooks J, Dewhirst MW, Piantadosi CA (1995) The mechanisms by which hyperbaric oxygen and carbogen improve tumor oxygenation. Br J Cancer 72:1120–1124

    PubMed  CAS  Google Scholar 

  4. Semenza GL (2000) HIF-1 and human disease: one highly involved factor. Genes Dev 15:1983–1991 (Review)

    Google Scholar 

  5. Helczynska K, Kronblad A, Jogi A, Nilsson E, Beckman S, Landberg G, Pahlman S (2003) Hypoxia promotes a dedifferentiated phenotype in ductal breast carcinoma in situ. Cancer Res 1:1441–1444

    Google Scholar 

  6. Beppu T, Kamada K, Yoshida Y, Arai H, Ogasawara K, Ogawa A (2002) Change of oxygen pressure in glioblastoma tissue under various conditions. J Neurooncol 58:47–52

    Article  PubMed  Google Scholar 

  7. Becker A, Kuhnt T, Liedtke H, Krivokuca A, Bloching M, Dunst J (2002) Oxygenation measurements in head and neck cancers during hyperbaric oxygenation. Strahlenther Onkol 178:105–108

    Article  PubMed  Google Scholar 

  8. Kinoshita Y, Kohshi K, Kunugita N, Tosakki T, Yokota A (2000) Preservation of tumor oxygen after hyperbaric oxygenation monitored by magnetic resonance imagin. Br J Cancer 82:88–92

    Article  PubMed  CAS  Google Scholar 

  9. Al-Waili NS, Butler GJ, Beale J, Hamilton RW, Lee BY, Lucas P (2005) Hyperbaric oxygen and malignancies: a potential role in radiotherapy, chemotherapy, tumor surgery and phototherapy. Med Sci Monit 11:279–289

    Google Scholar 

  10. Kohshi K, Kinoshita Y, Imada H, Kunuqita N, Abe H, Terashima H, Tokui N, Vemura S (1999) Effects of radiotherapy after hyperbaric oxygenation on malignant gliomas. Br J Cancer 80:236–241

    Article  PubMed  CAS  Google Scholar 

  11. Ogawa K, Yoshii Y, Inoue O, Toita T, Saito A, Kakinohana Y, Adachi G, Ishikawa Y, Kin S, Murayama S (2003) Prospective trial of radiotherapy after hyperbaric oxygenation with chemotherapy for high-grade gliomas. Radiother Oncol 67:63–67

    Article  PubMed  Google Scholar 

  12. Ogawa K, Yoshii Y, Inoue O, Toita T, Saito A, Kakinohana Y, Adachi G, Iraha S, Tamaki W, Sugimoto K, Hyodo A, Murayama S (2006) Phase II trial of radiotherapy after hyperbaric oxygenation with chemotherapy for high-grade gliomas. Br J Cancer 9:862–868

    Article  CAS  Google Scholar 

  13. Feldmeier JJ, Hampson NB (2002) A systemic review of the literature reporting the application of hyperbaric oxygen prevention and treatment of delayed radiation injury:an evidence-based approach. Undersa Hyperbar Med 29:4–30

    CAS  Google Scholar 

  14. Gill AL, Bell CAN (2004) Hyperbaric oxygen: its uses, mechanisms of action and outcomes. Q J Med 97:385–395

    CAS  Google Scholar 

  15. Siemann DW, Warrington KH, Horsman MR (2000) Targeting tumor blood vessels: an adjuvant strategy for radiation therapy. Radiother Oncol 57:5–12 (Review)

    Article  PubMed  CAS  Google Scholar 

  16. Jamieson D, van den Bronk HAS (1963) Measurements of oxygen tension in cerebral tissues of rats exposed to high pressure of oxygen. J Appl Phsyiol 18:869–876

    CAS  Google Scholar 

  17. Stuhr LE, Iversen VV, Straume O, Maehle BO, Reed RK (2004) Hyperbaric oxygen alone or combined with 5-FU attenuates growth of DMBA-induced rat mammary tumors Cancer Lett 210:35–40

    Article  PubMed  CAS  Google Scholar 

  18. Raa A, Stansberg C, Steen VM, Bjerkvig R, Reed RK, Stuhr LEB (2007) Hyperoxia retards growth and induces apoptosis and loss of glands and blood vessels in DMBA-induced rat mammary tumors. BMC Cancer 7:23 (Epub ahead of print)

    Article  PubMed  CAS  Google Scholar 

  19. McDonald KR (1996) Effect of hyperbaric oxygenation on existing oral mucosal carcinoma. Laryngoscope 106:957–959

    Article  PubMed  CAS  Google Scholar 

  20. Lian QL (1995) Effects of hyperbaric oxygen on S-180 sarcoma in mice. Undersea Hyperbar med 22:153–160

    CAS  Google Scholar 

  21. Laerum OD, Rajewsky MF, Schachner M, Stavrou D, Haglid KH, Haugen Å (1977) Phenotypic properties of neoplastic cell lines developed from fetal rat brain cells in culture after exposure to ethylnitrosourea in vivo. Z. Krebsforsch 89:273–295

    Article  CAS  Google Scholar 

  22. Sandstrom M, Johansson M, Andersson U, Bergh A, Bergenheim AT, Henriksson R (2004) Related Articles, Links The tyrosine kinase inhibitor ZD6474 inhibits tumor growth in an intracerebral rat glioma model. Br J Cancer 91:1174–1180

    PubMed  CAS  Google Scholar 

  23. Thorsen F, Ersland L, Nordli H, Enger PO, Huszthy PC, Lundervold A, Standnes T, Bjerkvig R, Lund-Johansen M (2003) Imaging of experimental rat gliomas using a clinical MR scanner. J Neurooncol 63:225–231

    Article  PubMed  Google Scholar 

  24. Vallbo C, Bergenheim T, Hedman H, Henriksson R (2002) The antimicrotubule drug estramustine but not irradiation induces apoptosis in malignant glioma involving AKT and caspase pathways. J Neurooncol 56:143–148

    Article  PubMed  Google Scholar 

  25. Rostad K, Mannelqvist M, Halvorsen OJ, Oyan AM, Bo TH, Stordrange L, Olsen S, Haukaas SA, Lin B, Hood L, Jonassen I, Akslen LA, Kalland KH (2007) ERG upregulation and related ETS transcription factors in prostate cancer. Int J Oncol 30:19–32

    PubMed  CAS  Google Scholar 

  26. Anensen N, Oyan AM, Bourdon JC, Kalland KH, Bruserud O, Gjertsen BT (2006) A distinct p53 protein isoform signature reflects the onset of induction chemotherapy for acute myeloid leukemia. Clin Cancer Res 12:3985–3992

    Article  PubMed  CAS  Google Scholar 

  27. Dysvik B, Jonassen I (2001) J-Express: exploring gene expression data wing Java. Bioinfomatics 17:369–370

    Article  CAS  Google Scholar 

  28. Yang YH, Buckley MJ, Speed TP (2001) Analysis of cDNA microarray images. Briefings in Bioinformatics 2:341–349

    Article  PubMed  CAS  Google Scholar 

  29. Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinfomatics 19:185–193

    Article  CAS  Google Scholar 

  30. Margaretten NC, Witschi H (1988) Effects of hyperoxia on growth characteristics of metastatic murine tumors in the lung. Cancer Res 15:2779–2783

    Google Scholar 

  31. Lindenschmidt RC, Margaretten N, Griesemer RA, Witschi HP (1986) Modification of lung tumor growth by hyperoxia. Carcinogenesis 7:1581–1586

    Article  PubMed  CAS  Google Scholar 

  32. Clark JM (1993) Oxygen toxicity. In: Bennet P, Elliot D (eds) The physiology and medicine of diving, 4th edn. WB Saunders Company Ltd, 121–169

  33. McMillan T, Calhoun KH, Mader JT, Stiernberg CM, Rajaraman S (1989) The effect of hyperbaric oxygen on oral mucosal carcinoma. Laryngoscop 99:241–244

    CAS  Google Scholar 

  34. Daruwalla J, Christophi C (2006) Hyperbaric oxygen therapy for malignancy: a review. World J Surg, e-publish ahead of print nov 7

  35. Folkman J (1995) Clinical application of research on angiogenesis. N Engl J Med 333:1757–1763

    Article  PubMed  CAS  Google Scholar 

  36. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 863:353–364

    Article  Google Scholar 

  37. Shih AH, Holland EC (2006) Platelet-derived growth factor (PDGF) and glial tumorigenesis. Cancer Lett 232:139–147

    Article  PubMed  CAS  Google Scholar 

  38. Ko YJ, Small EJ, Kabbinavar F, Chachoua A, Taneja S, Reese D, DePaoli A, Hannah A, Balk SP, Bubley GJ (2001) A multi-institutional phase ii study of SU101, a platelet-derived growth factor receptor inhibitor, for patients with hormone-refractory prostate cancer. Clin Cancer Res 7:800–805

    PubMed  CAS  Google Scholar 

  39. Eckhardt SG, Rizzo J, Sweeney KR, Cropp G, Baker SD, Kraynak MA, Kuhn JG, Villalona-Calero MA, Hammond L, Weiss G, Thurman A, Smith L, Drengler R, Eckardt JR, Moczygemba J, Hannah AL, Von Hoff DD, Rowinsky EK (1999) Phase I and pharmacologic study of the tyrosine kinase inhibitor SU101 in patients with advanced solid tumors. J Clin Oncol 17:1095–1104

    PubMed  CAS  Google Scholar 

  40. Sulzbacher I, Birner P, Traxler M, Marberger M, Haitel A (2003) Expression of platelet-derived growth factor-alpha alpha receptor is associated with tumor progression in clear cell renal cell carcinoma. Am J Clin Pathol 120:107–112

    Article  PubMed  CAS  Google Scholar 

  41. Bian XW, Du LL, Shi JQ, Cheng YS, Liu FX (2004) Correlation of bFGF, FGFR1 and VEGF expression with vascularity and malignancy of human astrocytomas. Anal Quant Cytol Histol 22:267–274

    Google Scholar 

  42. Yamada SM, Yamaguchi F, Brown R, Berger MS, Morrison RS (1999) Suppression of glioblastoma cell growth following antisense oligonucleotide-mediated inhibition of fibroblast growth factor receptor expression. Glia 28:66–76

    Article  PubMed  CAS  Google Scholar 

  43. Maxwell PH, Dachs GU, Gleadle JM, Nicholls LG, Harris AL, Stratford IJ, Hankinson O, Pugh CW, Ratcliffe PJ (1997) Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc Natl Acad Sci 94:8104–8109

    Article  PubMed  CAS  Google Scholar 

  44. Thews O, Wolloscheck T, Dillenburg W, Kraus S, Kelleher DK, Konerding MA, Vaupel P (2004) Microenvironmental adaptation of experimental tumors to chronic vs acute hypoxia. Br J cancer 13:1181–1189

    Google Scholar 

  45. Marxsen JH, Schmitt O, Metzen E, Jelkmann W, Hellwig-Burgel T (2001) Vascular endothelial growth factor gene expression in the human breast cancer cell line MX-1 is controlled by the O2 availability in vitro and in vivo. Ann Anat 183:243–249

    Article  PubMed  CAS  Google Scholar 

  46. Yamaguchi KT, Stewart RJ, Wang HM, Hudson SE, Vierra M, Akhtar A et al (1992) Free Radic Res Commun 16:167–174

    PubMed  CAS  Google Scholar 

  47. Narkowicz CH, Vial JH, McCartney P (1993) Hyperbaric oxygen therapy increases free radical levels in the blood of humans. Free Radical Res Comm 19:71–80

    CAS  Google Scholar 

  48. Halliwell B, Gutteridge JM (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 186:1–85

    Article  PubMed  CAS  Google Scholar 

  49. Das UN (2002) A radiacl approach to cancer. Med Sci Monit 8:79–92

    Google Scholar 

  50. Conconi MT (2003) Effects of hyperbaric oxygen on proliferative and apoptotic activities and reactive oxygen species generation in mouse fibroblast 3T3/J2 cell line. J Invest Med 51:227–232

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We would like to thank Harald Sundland at NUI, Bergen, for assistance with the pressure chamber and technical assistance by Tore Jacob Raa at Gades Institute, Department of pathology, Haukeland University Hospital, Bergen, Norway. Per Øyvind Enger, Department of Biomedicine, are gratefully acknowledged for morphology assistance. We thank Sue Olsen for real time qPCR and Hua My Hoang for the DNA microarray work. This study was supported by the Norwegian Cancer Society, the Research Council of Norway, Innovest AS, Helse-Vest, Haukeland University Hospital, The Bergen Translational Research program, The Centre Recherche de Public Sante’ Luxenburg, and the European Commission 6th Framework Program Contract 504742.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Elin Birkhaug Stuhr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stuhr, L.E.B., Raa, A., Øyan, A.M. et al. Hyperoxia retards growth and induces apoptosis, changes in vascular density and gene expression in transplanted gliomas in nude rats. J Neurooncol 85, 191–202 (2007). https://doi.org/10.1007/s11060-007-9407-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-007-9407-2

Keywords

Navigation