Skip to main content

Advertisement

Log in

Mechanisms of radiation-induced brain toxicity and implications for future clinical trials

  • Lab. Investigation-Human/Animal Tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Radiation therapy is widely used in the treatment of primary malignant brain tumors and metastatic tumors of the brain with either curative or palliative intent. The limitation of cancer radiation therapy does not derive from the inability to ablate tumor, but rather to do so without excessively damaging the patient. Among the varieties of radiation-induced brain toxicities, it is the late delayed effects that lead to severe and irreversible neurological consequences. Following radiation exposure, late delayed effects within the CNS have been attributable to both parenchymal and vascular damage involving oligodendrocytes, neural progenitors, and endothelial cells. These reflect a dynamic process involving radiation-induced death of target cells and subsequent secondary reactive neuroinflammatory processes that are believed to lead to selective cell loss, tissue damage, and functional deficits. The progressive, late delayed damage to the brain after high-dose radiation is thought to be caused by radiation-induced long-lived free radicals, reactive oxygen species, and pro-inflammatory cytokines. Experimental studies suggest that radiation-induced brain injury can be successfully mitigated and treated with several well established drugs in wide clinical use which exert their effects by blocking pro-inflammatory cytokines and reactive oxygen species. This review highlights preclinical and early clinical data that are translatable for future clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Leung W, Hudson MM, Strickland DK et al (2000) Late effects of treatment in survivors of childhood acute myeloid leukemia. J Clin Oncol 18:3273–3279

    PubMed  CAS  Google Scholar 

  2. Kim JH, Khil MS, Kolozsvary A et al (1999) Fractionated radiosurgery for 9L gliosarcoma in the rat brain. Radiat Res 45:1035–1040

    CAS  Google Scholar 

  3. van der Kogel AJ (1991) Central nervous system injury in small animal models. In: Gutin RH, Leibel SA, Sheline GE (eds) Radiation injury to the nervous system. Raven Press, New York, pp 91–111

    Google Scholar 

  4. Hopewell JW (1998) Radiation injury to the central nervous system. Med Ped Oncol 1(Suppl):1–9

    Article  Google Scholar 

  5. Tofilon PJ, Fike JR (2000) The radioresponse of the central nervous system: a dynamic process. Radiat Res 153:357–370

    Article  PubMed  CAS  Google Scholar 

  6. Hopewell JW, van der Kogel AJ (1999) Pathophysiological mechanisms leading to the development of late radiation-induced damage to the central nervous system. Front Radiat Ther Oncol 33:265–275

    PubMed  CAS  Google Scholar 

  7. Kamiryo T, Kassell NF, Thai QA et al (1996) Histological changes in the normal rat brain after gamma irradiation. Acta Neurochir 138:451–459

    Article  CAS  Google Scholar 

  8. French-Constant C, Raff MC (1986) The oligodendrocyte type-2 astrocyte cell lineage is specialized for myelination. Nature 323:335–338

    Article  Google Scholar 

  9. Vrdoljak E, Bill CA, van der Kogel AJ et al (1992) Radiation-induced apoptosis of oligodendrocytes in vitro. Int J Radiat Biol 62:475–480

    Article  PubMed  CAS  Google Scholar 

  10. Calvo W, Hopewell JW, Reinhold HS et al (1988) Time-and dose-related changes in the white matter of the rat brain after single doses of X-rays. Br J Radiol 61:1043–1052

    PubMed  CAS  Google Scholar 

  11. Coderre JA, Morris GM, Micca PL et al (2006) Late effects of radiation on the central nervous system: role of vascular endothelial damage and glial stem cell survival. Radiat Res 166:495–503

    Article  PubMed  CAS  Google Scholar 

  12. Schuller BW, Binns PJ, Riley KJ et al (2006) Selective irradiation of the vascular endothelium has no effect on the survival of murine intestinal crypt stem cells. Proc Natl Acad Sci USA 103:3787–3792

    Article  PubMed  CAS  Google Scholar 

  13. Raju U, Gumin GJ, Tofilon PJ (2000) Radiation-induced transcription factor activation in rat cerebral cortex. Int J Radiat Biol 76:1045–1053

    Article  PubMed  CAS  Google Scholar 

  14. Belka C, Budach W, Kortmann RD et al (2001) Radiation-induced CNS toxicity-molecular and cellular mechanisms. Brit J Cancer 85:1233–1239

    Article  PubMed  CAS  Google Scholar 

  15. Tsao MN, Li YQ, Lu G et al (1999) Upregulation of vascular endothelial growth factor is associated with radiation-induced blood–spinal cord barrier disruption. J Neuropath Exp Neurol 58:1051–1060

    PubMed  CAS  Google Scholar 

  16. Logan A, Berry M (1993) Transforming growth factor β1 and basic fibroblast growth factor in the injured CNS. Trends Pharmacol Sci 14:337–343

    Article  PubMed  CAS  Google Scholar 

  17. Chiang CS, Hong JH, Stadler A et al (1997) Delayed molecular responses to brain irradiation. Int J Radiat Biol 72:45–53

    Article  PubMed  CAS  Google Scholar 

  18. Schnackenberg CS (2002) Oxygen radicals in cardiovascular-renal disease. Curr Opin Pharmacol 2:121–125

    Article  PubMed  CAS  Google Scholar 

  19. Simonian NA, Coyle JT (1996) Oxidative stress in neurodegenerative diseases. Ann Rev Pharmacol 36:83–106

    Article  CAS  Google Scholar 

  20. Ehara S, Ueda M, Naruko T et al (2001) Elevated levels of oxidized low density lipoprotein show a positive relationship with the severity of acute coronary syndromes. Circulation 103:1955–1960

    PubMed  CAS  Google Scholar 

  21. Robbins MEC, Zhao W (2004) Chronic oxidative stress and radiation-induced late normal tissue injury: a review. Int J Radiat Biol 80:251–259

    Article  PubMed  CAS  Google Scholar 

  22. Lo YY, Wong JM, Cruz TF (1996) Reactive oxygen species mediate cytokine activation of c-Jun NH2-terminal kinases. J Biol Chem 271:15703–15707

    Article  PubMed  CAS  Google Scholar 

  23. Watanabe Y, Suzuki O, Haruyama T et al (2003) Interferon-gamma induces reactive oxygen species and endoplasmic reticulum stress at the hepatic apoptosis. J Cell Biochem 89:244–253

    Article  PubMed  CAS  Google Scholar 

  24. Dringen R, Gutterer JM, Hirrlinger J (2000) Glutathione metabolism in brain. Eur J Biochem 267:4912–4916

    Article  PubMed  CAS  Google Scholar 

  25. Smith KJ, Kapoor R, Felts PA (1999) Demyelination: the role of reactive oxygen and nitrogen species. Brain Pathol 9:69–92

    Article  PubMed  CAS  Google Scholar 

  26. Guan J, Stewart J, Ware JJ et al (2006) Effects of dietary supplements on the space radiation-induced reduction in total antioxidant status in CBA mice. Radiat Res 165:373–378

    Article  PubMed  CAS  Google Scholar 

  27. Li Y-Q, Ballinger JR, Nordal RA et al (2001) Hypoxia in radiation-induced blood–spinal cord barrier breakdown. Cancer Res 61:3348–3354

    PubMed  CAS  Google Scholar 

  28. Lyubimova N, Hopewell JW (2004) Experimental evidence to support the hypothesis that damage to vascular endothelium plays the primary role in the development of late radiation-induced CNS injury. Br J Radiol 77:488–492

    Article  PubMed  CAS  Google Scholar 

  29. Nordal RA, Nagy A, Pintilie M et al (2004) Hypoxia and hypoxia-inducible factor-1 target genes in central nervous system radiation injury: a role for vascular endothelial growth factor. Clin Cancer Res 10:3342–3353

    Article  PubMed  CAS  Google Scholar 

  30. Gonzalez J, Kumar AJ, Conrad CA et al (2007) Effect of Bevacizumab on radiation necrosis of the brain. Int J Radiat Oncol Biol Phys 67:323–326

    PubMed  CAS  Google Scholar 

  31. Winkler F, Kozin SV, Tong RT et al (2004) Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6:553–563

    PubMed  CAS  Google Scholar 

  32. Raber J, Rola R, LeFevour A et al (2004) Radiation-induced cognitive impairments are associated with changes in indicators of hippocampal neurogenesis. Radiat Res 162:39–47

    Article  PubMed  CAS  Google Scholar 

  33. Madsen TM, Kristjansen PE, Bolwig TG et al (2003) Arrested neuronal proliferation and impaired hippocampal function following fractionated brain irradiation in the adult rat. Neurosci 119:635–642

    Article  CAS  Google Scholar 

  34. Fike JR, Rola R, Limoli CL (2007) Radiation response of neural precursor cells. Neurosurg Clin N Am 18:115–127

    Article  PubMed  Google Scholar 

  35. Mizumastu S, Monje M, Morhardt R et al (2003) Extreme sensitivity of adult neurogenesis to low doses of x-irradiation. Cancer Res 63:4021–4027

    Google Scholar 

  36. Saxe MD, Battaglia F, Wang JW et al (2006) Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus. Proc Natl Acad Sci USA 14:17501–17506

    Article  CAS  Google Scholar 

  37. Lynch MA (2004) Long term potentiation and memory. Physiol Rev 84:87–136

    Article  PubMed  CAS  Google Scholar 

  38. Bruel-Jungerman E, Davis S, Rampon C et al (2006) Long-term potentiation enhances neurogenesis in the adult dentate gyrus. J Neurosci 26:5888–5893

    Article  PubMed  CAS  Google Scholar 

  39. Shi L, Adams MM, Long A et al (2006) Spatial learning and memory deficits after whole-brain irradiation are associated with changes in NMDA receptor subunits in the hippocampus. Radiat Res 166:892–899

    Article  PubMed  CAS  Google Scholar 

  40. Armstrong CL, Gyato K, Awadalla AW et al (2004) A critical review of the clinical effects of therapeutic irradiation damage to the brain: the roots of controversy. Neuropsych Rev 14:65–86

    Article  Google Scholar 

  41. Monje M, Palmer T (2003) Radiation injury and neurogenesis. Curr Opin Neurol 16:129–134

    Article  PubMed  Google Scholar 

  42. Monje ML, Mizumatsu S, Fike JR et al (2003) Irradiation induces neural precursor-cell dysfunction. Nat Med 8:955–962

    Article  CAS  Google Scholar 

  43. Lonn EM, Yusuf S, Jha P et al (1994) Emerging role of angiotensin-converting enzyme inhibitors in cardiac and vascular protection. Circulation 90:2056–2069

    PubMed  CAS  Google Scholar 

  44. Crawford DC, Chobanian AV, Brecher P (1994) Angiotensin II induces fibronectin expression associated with cardiac fibrosis in the rat. Cir Res 74:727–739

    CAS  Google Scholar 

  45. Nakajima M, Hutchinson HG, Fujinaga M et al (1995) The angiotensin II type 2 (AT2) receptor antagonizes the growth effects of the AT1 receptor: gain-of-function study using gene transfer. Proc Natl Acad Sci USA 92:10663–10667

    Article  PubMed  CAS  Google Scholar 

  46. Liu YH, Yang XP, Sharov VG et al (1997) Effects of angiotensin-converting enzyme inhibitors and angiotensin II type 1 receptor antagonists in rats with heart failure: role of kinins and angiotensin II type 2 receptors. J Clin Invest 99:1926–1935

    Article  PubMed  CAS  Google Scholar 

  47. Griendling KK, Minieri CA, Ollerenshaw JD et al (1994) Angiotensin II stimulates NADPH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 74:1141–1148

    PubMed  CAS  Google Scholar 

  48. Tojo A, Onozato ML, Kobayashi N et al (2002) Angiotensin II and oxidative stress in Dahl salt-sensitive rat with heart failure. Hypertension 40:834–839

    Article  PubMed  CAS  Google Scholar 

  49. Mehta JL, Hu B, Chen J et al (2003) Pioglitazone inhibits LOX-1 expression in human coronary artery endothelial cells by reducing intracellular superoxide radical generation. Arterioscl Thromb Vasc Biol 23:2203–2208

    Article  PubMed  CAS  Google Scholar 

  50. Robbins MEC, Diz DI (2006) Pathogenic role of the rennin-angiotensin system (RAS) in modulating radiation-induced late effects. Int J Radiat Oncol Biol Phys 64:6–12

    PubMed  CAS  Google Scholar 

  51. Ward WF, Solliday HH, Moteni A et al (1983) Radiation injury in a rat lung. Angiotensin converting enzyme activity. Radiat Res 96:294–300

    Article  PubMed  CAS  Google Scholar 

  52. Ward WF, Kim YT, Molteni A et al (1988) Radiation-induced pulmonary endothelial dysfunction in rats: modification by an inhibitor of angiotensin converting enzyme. Int J Rad Oncol Biol Phys 15:135–140

    CAS  Google Scholar 

  53. Moulder JE, Fish BL, Cohen EP (1993) Treatment of radiation nephropathy with ACE inhibitors. Int J Radiat Oncol Biol Phys 27:93–99

    PubMed  CAS  Google Scholar 

  54. Moulder JE, Fish BL, Cohen EP (1998) Radiation nephropathy is treatable with an angiotensinII type 1 (AT1) receptor antagonist. Radiother Oncol 46:307–315

    Article  PubMed  CAS  Google Scholar 

  55. Moulder JE, Fish BL, Regner KR et al (2002) Angiotensin II blockade reduces radiation-induced proliferation in experimental radiation nephropathy. Radiat Res 157:500–505

    Article  Google Scholar 

  56. Kim JH, Brown SL, Kolozsvary A et al (2004) Modification of radiation injury by Ramipril, inhibitor of angiotensin-converting enzyme, on optic neuropathy in the rat. Radiat Res 161:137–142

    Article  PubMed  CAS  Google Scholar 

  57. Ryu S, Kolozsvary A, Jenrow KA et al (2007) Mitigation of radiation-induced optic neuropathy in rats by ACE inhibitor ramipril: importance of rampril dose and treatment. J Neuro-Oncol 82:119–124

    Article  CAS  Google Scholar 

  58. Jenrow K, Liu J, Kolozsvary A et al (2007) Ramipril mitigates radiation-induced impairment of dentate gyrus neurogenesis. Abstract 4132. 13th International congress of radiation research

  59. Diomede L, Albani D, Sottocorno M et al (2001) In vivo anti-inflammatory effect of statins is mediated by non-sterol mevalonate products. Arterioscler Throm Vasc Biol 21:1327–1332

    Article  CAS  Google Scholar 

  60. Shishehbor MH, Bremen ML et al (2003) Statins promote potent systemic anti-oxidant effects through specific inflammatory pathways. Circulation 108:426–431

    Article  PubMed  CAS  Google Scholar 

  61. Haendeler J, Hoffman J, Zeiher A et al (2004) Antioxidant effects of statins via S-nitrosylation and activation of thioredoxin in endothelial cells. Circulation 110:856–861

    Article  PubMed  CAS  Google Scholar 

  62. Chen J, Zhang ZG, Li Y et al (2003/2005) Statins induce angiogenesis, neurogenesis, and synaptogenesis after stroke. Ann Neurol 53:743–751 Erratum in: Ann Neurol. 58:818

    Google Scholar 

  63. Lu D, Goussev A, Chen J et al (2004) Atorvastatin reduces neurological deficit and increases synaptogenesis, angiogenesis, and neuronal survival in rats subjected to traumatic brain injury. J Neurotrauma 21:21–32

    Article  PubMed  Google Scholar 

  64. Lu D, Qu C, Goussev A et al (2007) Statins increase neurogenesis in the dentate gyrus, reduce delayed neuronal death in the hippocampal CA3 region, and improve spatial learning in rat after traumatic brain injury. J Neurotrauma 24:1132–1146

    Article  PubMed  Google Scholar 

  65. Williams JP, Hernady E, Johnston CJ et al (2004) Effect of administration of lovastatin on the development of late pulmonary effects after whole-lung irradiation in a murine model. Radiat Res 161:560–567

    Article  PubMed  CAS  Google Scholar 

  66. Haydont V, Gilliot O, Rivera S et al (2007) Successful mitigation of delayed intestinal radiation injury uring pravastatin is not associated with acute injury improvement or tumor protection. Int J Radiat Oncol Biol Phys 68:1471–1482

    PubMed  CAS  Google Scholar 

  67. Wang J, Boerma M, Fu Q et al (2007) Simvastatin ameliorates radiation enteropathy development after localized fractionated irradiation by a protein C-independent mechanism. Int J Radiat Oncol Biol Phys 68:1483–1490

    PubMed  CAS  Google Scholar 

  68. Jenrow K, Liu J, Kolozsvary A et al Atorvastatin reduces impairment of dentate gyrus neurogenesis after whole brain radiation in rats (In preparation)

  69. Li D, Chen H, Romeo F et al (2002) Statins modulate oxidized low density lipoprotein-mediated adhesion molecule expression in human coronary artery endothelial cells: role of LOX-1. J Pharmacol Exp Ther 13:601–605

    Article  CAS  Google Scholar 

  70. Lefaix JL, Delanian S, Vozenin MC et al (1999) Striking regression of subcutaneous fibrosis induced by high doses of gamma rays using a combination of pentoxyfylline and alpha-tocopherol : an experimental study. Int J Radiat Oncol Biol Phys 43:839–847

    PubMed  CAS  Google Scholar 

  71. Delanian S, Lefaix JL (2004) The radiation-induced fibroatrophic process: therapeutic perspective via the antioxidant pathway. Radiother Oncol 73:119–131

    Article  PubMed  Google Scholar 

  72. He YY, Hsu CY, Ezrin AM et al (1993) Polyethylene glycol-conjugated superoxide dismutase in focal cerebral ischemia-reperfusion. Am J Physiol 265:H252-H256

    PubMed  CAS  Google Scholar 

  73. Imaizumi S, Woolworth V, Fishman RA et al (1990) Liposome-entrapped superoxide dismutase reduces cerebral infarction in cerebral ischemia in rats. Stroke 21:1312–1317

    PubMed  CAS  Google Scholar 

  74. Doctrow SR, Huffman K, Marcus CB et al (1996) Salen manganese complexes: combined superoxide dismutase/catalase mimics with broad pharmacological efficacy. In: Sies H (ed) Antioxidants in “disease mechanisms and therapeutic strategies”, advances in pharmacology. Academic Press, NY, pp. 247–269

    Google Scholar 

  75. Baker K, Marcus CB, Huffman K et al (1998) Synthetic combined superoxide dismutase/catalase mimetics are protective as a delayed treatment in a rat stroke model: a key role for reactive oxygen species in ischemic brain injury. J Pharmacol Exper Therapeut 284:215–221

    CAS  Google Scholar 

  76. Liu R, Liu IY, Bi X et al (2003) Reversal of age-related learning deficits and brain oxidative stress in mice with superoxide dismutase/catalase mimetics. Proc Natl Acad Sci USA 100:8526–8531

    Article  PubMed  CAS  Google Scholar 

  77. Greenberger JS, Epperly MW, Gretton J et al (2003) Radioprotective gene therapy. Curr Gene Ther 3:183–195

    Article  PubMed  CAS  Google Scholar 

  78. Yan S, Brown SL, Kolozsvary A et al (2007) Mitigation of radiation-induced skin injury by AAV mediated MnSOD gene therapy (Submitted)

  79. Hicklin DJ, Ellis LM (2005) Role of the VEGF pathway in tumor growth and angiogenesis. J Clin Oncol 23:1011–1057

    Article  PubMed  CAS  Google Scholar 

  80. van Bruggen N, Thigbodeaux H, Palmer JT et al (1999) VEGF antagonism reduces edema formation and tissue damage after ischemia/reperfusion injury in the mouse brain. J Clin Invest 104:1613–1620

    Article  PubMed  Google Scholar 

  81. Dibbens JA, Miller DL, Damert A et al (1999) Hypoxic regulation of vascular endothelial growth factor mRNA stability requires the cooperation of multiple RNA elements. Mol Biol Cell 10:907–919

    PubMed  CAS  Google Scholar 

  82. Liu W, Ahmad SA, Reinmuth N et al (2000) Endothelial cell survival and apoptosis in tumor vasculature. Apoptosis 5:323–328

    Article  PubMed  CAS  Google Scholar 

  83. Yang JC, Haworth L, Sherry RM et al (2003) A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal caner. N Engl J Med 349:2335–2345

    Article  Google Scholar 

  84. Ferrara N, Hillan KJ, Gerber HP et al (2004) Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3:391–400

    Article  PubMed  CAS  Google Scholar 

  85. Holash J, Davis S, Papadopoulos N et al (2002) VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci USA 99:11393–11398

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The study was in part supported by NIH NIAID 5U19AI067734-020005 (JHK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Ryu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.H., Brown, S.L., Jenrow, K.A. et al. Mechanisms of radiation-induced brain toxicity and implications for future clinical trials. J Neurooncol 87, 279–286 (2008). https://doi.org/10.1007/s11060-008-9520-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-008-9520-x

Keywords

Navigation