Skip to main content

Advertisement

Log in

Establishment of atypical-teratoid/rhabdoid tumor (AT/RT) cell cultures from disseminated CSF cells: a model to elucidate biology and potential targeted therapeutics

  • Laboratory Investigation-Human/animal tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Atypical teratoid/rhabdoid tumor (AT/RT) is a highly malignant central nervous system neoplasm that usually affects infants and young children. In this report, we describe culture conditions that enabled the sustained growth of tumor cells obtained from the cerebrospinal fluid (CSF) of an infant with AT/RT. These cells retained the morphological and biomarker characteristics of the original tumor. A screening of receptor tyrosine kinases identified the presence of phosphorylated ErbB4, Insulin-R, PDGFR and IGF-IR, which appear to depend on Hsp90 to maintain their active form. IGF-IR activity is consistent with data from other established AT/RT cell lines. Inhibition of IGF-IR by the small molecular weight inhibitor AEW541 led to growth suppression of cultured AT/RT cells. In addition, neutralizing antibodies to IGF-II also inhibited the growth of these cells suggesting a potential autocrine function for this cytokine. We also compared cultured AT/RT cells to established cell lines to identify consistent drug sensitivity patterns among these cells. In addition to previously described cell lines and xenograft models, continuous culture of CSF derived cells may also provide an effective way to study the biology of AT/RT and to identify potential targets for future therapeutics for this tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rorke LB (1987) Classification of central nervous system tumors in children. Prog Exp Tumor Res 30:57–60

    PubMed  CAS  Google Scholar 

  2. Biegel JA, Zhou JY, Rorke LB et al (1999) Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. Cancer Res 59:74–79

    PubMed  CAS  Google Scholar 

  3. Biegel JA, Fogelgren B, Wainwright LM (2000) Germline INI1 mutation in a patient with a central nervous system atypical teratoid tumor and a renal rhabdoid tumor. Genes Chromosomes Cancer 28:31–37. doi :10.1002/(SICI)1098-2264(200005)28:1<31::AID-GCC4>3.0.CO;2-Y

  4. Klochendler-Yeivin A, Fiette L, Barra J et al (2000) The murine SNF5/INI1 chromatin remodeling factor is essential for embryonic development and tumor suppression. EMBO Rep 1(6):500–506

    PubMed  CAS  Google Scholar 

  5. Guidi CJ, Sands AT, Zambrowicz BP et al (2001) Disruption of Ini1 leads to peri-implantation lethality and tumorigenesis in mice. Mol Cell Biol 21(10):3598–3603. doi:10.1128/MCB.21.10.3598-3603.2001

    Article  PubMed  CAS  Google Scholar 

  6. Biegel JA, Kalpana G, Knudsen E et al (2002) The role of INI1 and the SWI/SNF complex in the development of rhabdoid tumors: meeting summary from the workshop on childhood atypical teratoid/rhabdoid tumors. Cancer Res 62:323–328

    PubMed  CAS  Google Scholar 

  7. Versteege I, Medjkane S, Rouillard D et al (2002) A key role of the hSNF5/INI1 tumour suppressor in the control of the G1-S transition of the cell cycle. Oncogene 21(42):6403–6412. doi:10.1038/sj.onc.1205841

    Article  PubMed  CAS  Google Scholar 

  8. Foster KS, McCrary WJ, Ross JS et al (2006) Members of the hSWI/SNF chromatin remodeling complex associate with and are phosphorylated by protein kinase B/Akt. Oncogene 25(33):4605–4612. doi:10.1038/sj.onc.1209496

    Article  PubMed  CAS  Google Scholar 

  9. Kohashi K, Oda Y, Yamamoto H et al (2007) Highly aggressive behavior of malignant rhabdoid tumor: a special reference to SMARCB1/INI1 gene alterations using molecular genetic analysis including quantitative real-time PCR. J Cancer Res Clin Oncol 133(11):817–824. doi:10.1007/s00432-007-0223-z

    Article  PubMed  CAS  Google Scholar 

  10. Albanese P, Belin MF, Delattre O (2006) The tumour suppressor hSNF5/INI1 controls the differentiation potential of malignant rhabdoid cells. Eur J Cancer 42(14):2326–2334. doi:10.1016/j.ejca.2006.03.028

    Article  PubMed  CAS  Google Scholar 

  11. Morozov A, Lee SJ, Zhang ZK et al (2007) INI1 induces interferon signaling and spindle checkpoint in rhabdoid tumors. Clin Cancer Res 13(16):4721–4730. doi:10.1158/1078-0432.CCR-07-0054

    Article  PubMed  CAS  Google Scholar 

  12. Neckers L (2007) Heat shock protein 90: the cancer chaperone. J Biosci 32(3):517–530. doi:10.1007/s12038-007-0051-y

    Article  PubMed  CAS  Google Scholar 

  13. Xu W, Neckers L (2007) Targeting the molecular chaperone heat shock protein 90 provides a multifaceted effect on diverse cell signaling pathways of cancer cells. Clin Cancer Res 13(6):1625–1629. doi:10.1158/1078-0432.CCR-06-2966

    Article  PubMed  CAS  Google Scholar 

  14. Brown MA, Zhu L, Schmidt C, Tucker PW (2007) Hsp90—from signal transduction to cell transformation. Biochem Biophys Res Commun 363(2):241–246. doi:10.1016/j.bbrc.2007.08.054

    Article  PubMed  CAS  Google Scholar 

  15. Sharp S, Workman P (2006) Inhibitors of the HSP90 molecular chaperone: current status. Adv Cancer Res 95:323–348. doi:10.1016/S0065-230X(06)95009-X

    Article  PubMed  CAS  Google Scholar 

  16. Neckers L (2006) Chaperoning oncogenes: Hsp90 as a target of geldanamycin. Handb Exp Pharmacol 172:259–277

    Article  PubMed  CAS  Google Scholar 

  17. Powers MV, Workman P (2006) Targeting of multiple signalling pathways by heat shock protein 90 molecular chaperone inhibitors. Endocr Relat Cancer Suppl 1:S125–S135. doi:10.1677/erc.1.01324

    Article  Google Scholar 

  18. Narendran A, Hawkins L (2004) Studies using 17-allylamino-17-demethoxygeldanamycin (17-AAG) to understand the heterogeneity of Hsp90 linked survival and signalling pathways in neuroblastoma ANR meeting, Genoa. http://www.anrmeeting.org/anr2004-abstracts/N/396.1%20Narendran.doc

  19. D’cunja J, Shalaby T, Rivera P et al (2007) Antisense treatment of IGF-IR induces apoptosis and enhances chemosensitivity in central nervous system atypical teratoid/rhabdoid tumours cells. Eur J Cancer 43(10):1581–1589. doi:10.1016/j.ejca.2007.03.003

    Article  PubMed  CAS  Google Scholar 

  20. Ogino S, Kubo S, Abdul-Karim FW, Cohen ML (2001) Comparative immunohistochemical study of insulin-like growth factor II and insulin-like growth factor receptor type 1 in pediatric brain tumors. Pediatr Dev Pathol 4(1):23–31

    Article  PubMed  CAS  Google Scholar 

  21. Hartmann W, Koch A, Brune H et al (2005) Insulin-like growth factor II is involved in the proliferation control of medulloblastoma and its cerebellar precursor cells. Am J Pathol 166(4):1153–1162

    PubMed  CAS  Google Scholar 

  22. Furchert SE, Lanvers-Kaminsky C, Juürgens H et al (2007) Inhibitors of histone deacetylases as potential therapeutic tools for high-risk embryonal tumors of the nervous system of childhood. Int J Cancer 15;120(8):1787–1794

    Article  Google Scholar 

  23. Maris JM, Courtright J, Houghton PJ et al (2008) Initial testing (stage 1) of sunitinib by the pediatric preclinical testing program. Pediatr Blood Cancer 2008(Feb):21 (Epub ahead of print)

  24. Lee MC, Park SK, Lim JS, Jung S, Kim JH, Woo YJ et al (2002) Atypical teratoid/rhabdoid tumor of the central nervous system: clinico-pathological study. Neuropathology 22(4):252–260. doi:10.1046/j.1440-1789.2002.00458.x

    Article  PubMed  Google Scholar 

  25. Hawkins LM, Jayanthan AA, Narendran A (2005) Effects of 17-allylamino-17-demethoxygeldanamycin (17-AAG) on pediatric acute lymphoblastic leukemia (ALL) with respect to Bcr-Abl status and imatinib mesylate sensitivity. Pediatr Res 57(3):430–437. doi:10.1203/01.PDR.0000153871.45184.19

    Article  PubMed  CAS  Google Scholar 

  26. http://rsb.info.nih.gov/ij/

  27. Kato H, Honma R, Sanda T et al (2007) Knock down of hSNF5/Ini1 causes cell cycle arrest and apoptosis in a p53-dependent manner. Biochem Biophys Res Commun 28;361(3):580–585

    Article  Google Scholar 

  28. García-Echeverría C, Pearson MA, Marti A et al (2004) In vivo antitumor activity of NVP-AEW541-A novel, potent, and selective inhibitor of the IGF-IR kinase. Cancer Cell 5(3):231–239. doi:10.1016/S1535-6108(04)00051-0

    Article  PubMed  Google Scholar 

  29. Tanno B, Mancini C, Vitali R et al (2006) Down-regulation of insulin-like growth factor I receptor activity by NVP-AEW541 has an antitumor effect on neuroblastoma cells in vitro and in vivo. Clin Cancer Res 12(22):6772–6780. doi:10.1158/1078-0432.CCR-06-1479

    Article  PubMed  CAS  Google Scholar 

  30. Tazzari PL, Tabellini G, Bortul R et al (2007) The insulin-like growth factor-I receptor kinase inhibitor NVP-AEW541 induces apoptosis in acute myeloid leukemia cells exhibiting autocrine insulin-like growth factor-I secretion. Leukemia 21(5):886–896

    PubMed  CAS  Google Scholar 

  31. Butler AA, Yakar S, Gewolb IH et al (1998) Insulin-like growth factor-I receptor signal transduction: at the interface between physiology and cell biology. Comp Biochem Physiol B Biochem Mol Biol 121(1):19–26. doi:10.1016/S0305-0491(98)10106-2

    Article  PubMed  CAS  Google Scholar 

  32. Thorsen F, Tysnes BB (1997) Brain tumor cell invasion, anatomical and biological considerations. Anticancer Res 17(6B):4121–4126

    PubMed  CAS  Google Scholar 

  33. Lu L, Wilkinson EJ, Yachnis AT (2000) CSF cytology of atypical teratoid/rhabdoid tumor of the brain in a two-year-old girl: a case report. Diagn Cytopathol 23(5):329–332. doi :10.1002/1097-0339(200011)23:5<329::AID-DC9>3.0.CO;2-W

  34. Woiciechowsky C, Asadullah K, Nestler D et al (1997) Different release of cytokines into the cerebrospinal fluid following surgery for intra- and extra-axial brain tumors. Acta Neurochir (Wien) 139(7):619–624. doi:10.1007/BF01411996

    Article  CAS  Google Scholar 

  35. Judkins AR, Burger PC, Hamilton RL et al (2005) INI1 protein expression distinguishes atypical teratoid/rhabdoid tumor from choroid plexus carcinoma. J Neuropathol Exp Neurol 64(5):391–397

    PubMed  CAS  Google Scholar 

  36. Ning S, Knox SJ (2006) Optimization of combination therapy of arsenic trioxide and fractionated radiotherapy for malignant glioma. Int J Radiat Oncol Biol Phys 65(2):493–498. doi:10.1016/j.ijrobp. 2005.12.015

    PubMed  CAS  Google Scholar 

  37. Bykov VJ, Issaeva N, Shilov A et al (2002) Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat Med 8(3):282–288. doi:10.1038/nm0302-282

    Article  PubMed  CAS  Google Scholar 

  38. Rehman A, Chahal MS, Tang X et al (2005) Proteomic identification of heat shock protein 90 as a candidate target for p53 mutation reactivation by PRIMA-1 in breast cancer cells. Breast Cancer Res 7(5):R765–R774. doi:10.1186/bcr1290

    Article  PubMed  CAS  Google Scholar 

  39. Arcaro A, Doepfner KT, Boller D et al (2007) Novel role for insulin as an autocrine growth factor for malignant brain tumour cells. Biochem J 406(1):57–66. doi:10.1042/BJ20070309

    Article  PubMed  CAS  Google Scholar 

  40. Ogino S, Kubo S, Abdul-Karim FW et al (2006) Comparative immunohistochemical study of insulin-like growth factor II and insulin-like growth factor receptor type 1 in pediatric brain tumors. Pediatr Dev Pathol 4(1):23–31. doi:10.1007/s100240010112

    Article  Google Scholar 

  41. Yee D (2006) Targeting insulin-like growth factor pathways. Br J Cancer 94(4):465–468. doi:10.1038/sj.bjc.6602963

    Article  PubMed  CAS  Google Scholar 

  42. Miller BS, Yee D (2005) Type I insulin-like growth factor receptor as a therapeutic target in cancer. Cancer Res 65(22):10123–10127. doi:10.1158/0008-5472.CAN-05-2752

    Article  PubMed  CAS  Google Scholar 

  43. Salisbury AJ, Macaulay VM (2003) Development of molecular agents for IGF receptor targeting. Horm Metab Res 35(11–12):843–849

    PubMed  CAS  Google Scholar 

  44. Aro AL, Savikko J, Pulkkinen V, von Willebrand E (2002) Expression of insulin-like growth factors IGF-I and IGF-II, and their receptors during the growth and megakaryocytic differentiation of K562 cells. Leuk Res 26(9):831–837. doi:10.1016/S0145-2126(02)00006-1

    Article  PubMed  CAS  Google Scholar 

  45. Paonessa F, Foti D, Costa V et al (2006) Activator protein-2 overexpression accounts for increased insulin receptor expression in human breast cancer. Cancer Res 66(10):5085–5093. doi:10.1158/0008-5472.CAN-05-3678

    Article  PubMed  CAS  Google Scholar 

  46. Haluska P, Carboni JM, Loegering DA et al (2006) In vitro and in vivo antitumor effects of the dual insulin-like growth factor-I/insulin receptor inhibitor, BMS-554417. Cancer Res 66(1):362–371. doi:10.1158/0008-5472.CAN-05-1107

    Article  PubMed  CAS  Google Scholar 

  47. Funa K, Uramoto H (2003) Regulatory mechanisms for the expression and activity of platelet-derived growth factor receptor. Acta Biochim Pol 50(3):647–658

    PubMed  CAS  Google Scholar 

  48. George D (2003) Targeting PDGF receptors in cancer—rationales and proof of concept clinical trials. Adv Exp Med Biol 532:141–151

    PubMed  CAS  Google Scholar 

  49. Bodey B, Kaiser HE, Siegel SE (2005) Epidermal growth factor receptor (EGFR) expression in childhood brain tumors. In Vivo 19(5):931–941

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Kids Cancer Care Foundation of Alberta (KCCF), for which the cell line was named. Additional research funding was provided by the Brain Tumor Research Foundation of Canada. We acknowledge the Oncology Pharmacy at the Alberta Children’s Hospital for providing many of the anti-neoplastic agents used in our experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aru Narendran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narendran, A., Coppes, L., Jayanthan, A. et al. Establishment of atypical-teratoid/rhabdoid tumor (AT/RT) cell cultures from disseminated CSF cells: a model to elucidate biology and potential targeted therapeutics. J Neurooncol 90, 171–180 (2008). https://doi.org/10.1007/s11060-008-9653-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-008-9653-y

Keywords

Navigation