Skip to main content

Advertisement

Log in

L1 stimulation of human glioma cell motility correlates with FAK activation

  • Laboratory Investigation - Human/Animal Tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The neural adhesion/recognition protein L1 (L1CAM; CD171) has been shown or implicated to function in stimulation of cell motility in several cancer types, including high-grade gliomas. Our previous work demonstrated the expression and function of L1 protein in stimulation of cell motility in rat glioma cells. However, the mechanism of this stimulation is still unclear. This study further investigated the function of L1 and L1 proteolysis in human glioblastoma multiforme (GBM) cell migration and invasion, as well as the mechanism of this stimulation. L1 mRNA was found to be present in human T98G GBM cell line but not in U-118 MG grade III human glioma cell line. L1 protein expression, proteolysis, and release were found in T98G cells and human surgical GBM cells by Western blotting. Exosome-like vesicles released by T98G cells were purified and contained full-length L1. In a scratch assay, T98G cells that migrated into the denuded scratch area exhibited upregulation of ADAM10 protease expression coincident with loss of surface L1. GBM surgical specimen cells exhibited a similar loss of cell surface L1 when xenografted into the chick embryo brain. When lentivirally introduced shRNA was used to attenuate L1 expression, such T98G/shL1 cells exhibited significantly decreased cell motility by time lapse microscopy in our quantitative Super Scratch assay. These cells also showed a decrease in FAK activity and exhibited increased focal complexes. L1 binding integrins which activate FAK were found in T98G and U-118 MG cells. Addition of L1 ectodomain-containing media (1) rescued the decreased cell motility of T98G/shL1 cells and (2) increased cell motility of U-118 MG cells but (3) did not further increase T98G cell motility. Injection of L1-attenuated T98G/shL1 cells into embryonic chick brains resulted in the absence of detectable invasion compared to control cells which invaded brain tissue. These studies support a mechanism where glioma cells at the edge of a cell mass upregulate ADAM10 to proteolyze surface L1 and the resultant ectodomain increases human glioma cell migration and invasion by binding to integrin receptors, activating FAK, and increasing turnover of focal complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ADAM10:

A disintegrin and metalloprotease 10

FACS:

Flow cytometry

FAK:

Focal adhesion kinase

FN Repeats:

Fibronectin-like repeats

GBM:

Glioblastoma multiforme

Ig domains:

Immunoglobulin-like domains

RGD:

Arg-Gly-Asp

RIPA buffer:

Radioimmunoprecipitation assay buffer

RT-PCR:

Reverse transcription-polymerase chain reaction

References

  1. Claes A, Idema AJ, Wesseling P (2007) Diffuse glioma growth: a guerilla war. Acta Neuropathol 114(5):443–458. doi:10.1007/s00401-007-0293-7

    Article  PubMed  Google Scholar 

  2. Kleihues P, Soylemezoglu F, Schauble B, Scheithauer BW, Burger PC (1995) Histopathology, classification, and grading of gliomas. Glia 15:211–221

    Article  PubMed  CAS  Google Scholar 

  3. Laerum OD (1997) Local spread of malignant neuroepithelial tumors. Acta Neurochir 139:515–522

    Article  CAS  Google Scholar 

  4. Viola JJ, Martuza RL (1996) Gene therapies for glioblastomas. Bailliere’s Clin Neurol 5:413–424

    CAS  Google Scholar 

  5. Wen P, Fine HA, Black PM, Shrieve DC, Alexander E, Loeffler JS (1995) High-grade astrocytomas. Neurol Clin 13:875–900

    PubMed  CAS  Google Scholar 

  6. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359(5):492–507

    Article  PubMed  CAS  Google Scholar 

  7. Yang M, Adla S, Temburni MK, Patel VP, Lagow EL, Brady OA, Tian J, Boulos MI, Galileo DS (2009) Stimulation of glioma cell motility by expression, proteolysis, and release of the L1 neural cell recognition molecule. Cancer Cell Int 9:27. doi:10.1186/1475-2867-9-27

    Article  PubMed  Google Scholar 

  8. Faissner A, Teplow DB, Kubler D, Keilhauer G, Kinzel V, Schachner M (1985) Biosynthesis and membrane topography of the neural cell adhesion molecule L1. EMBO J 4:3105–3113

    PubMed  CAS  Google Scholar 

  9. Moos M, Tacke R, Scherner H, Teplow D, Gruth K, Schachner M (1988) Neural adhesion molecule L1 as a member of the immunoglobulin superfamily with binding domains similar to fibronectin. Nature 334:701–703

    Article  PubMed  CAS  Google Scholar 

  10. Persohn E, Schachner M (1987) Immunoelectron microscopic localization of the neural cell adhesion molecules L1 and N-CAM during postnatal development of the mouse cerebellum. J Cell Biol 105:569–576

    Article  PubMed  CAS  Google Scholar 

  11. Stallcup WB, Arner L, Levine J (1983) Antiserum against the PC12 cell defines cell surface antigens specific for neurons and Schwann cells. J Neurosci 3:53–69

    PubMed  CAS  Google Scholar 

  12. Brummendorf T, Kenwrick S, Rathjen FG (1988) Neural cell recognition molecule L1; from cell biology to human hereditary brain malformation. Curr Opin Neurobiol 8:87–97

    Article  Google Scholar 

  13. Haspel J, Grumet M (2003) The L1CAM extracellular region: a multidomain protein with modular and cooperative binding modes. Front Biosci 8:s1210–s1225

    Article  PubMed  CAS  Google Scholar 

  14. Hortsch M (1996) The L1 family of neural cell adhesion molecules: old proteins performing new tricks. Neuron 17:587–593

    Article  PubMed  CAS  Google Scholar 

  15. Schachner M (1997) Neural recognition molecules and synaptic plasticity. Curr Opin Cell Biol 9:627–634. doi:10.1186/1475-2867-9-27

    Article  PubMed  CAS  Google Scholar 

  16. Fransen E, Lemmon V, van Camp G, Vits L, Couchke P, Willems PJ (1995) CRASH syndrome: clinical spectrum of corpus callosum hypoplasia, retardation, adducted thumbs, spastic paraparesis and hydrocephalus due to mutations in one single gene, L1. Eur J Hum Genet 3:273–284

    PubMed  CAS  Google Scholar 

  17. Mechtersheimer S, Gutwein P, Agmon LN, Stoeck A, Oleszewski M, Riedle S, Postina R, Fahrenholz F, Fogel M, Lemmon V, Altevogt P (2001) Ectodomain shedding of L1 adhesion molecule promotes cell migration by autocrine binding to integrins. J Cell Biol 155:661–674

    Article  PubMed  CAS  Google Scholar 

  18. Gutwein P, Mechtersheimer S, Riedle S, Stoeck A, Gast D, Joumaa S, Zentgraf H, Fogel M, Altevogt DP (2003) ADAM10-mediated cleavage of L1 adhesion molecule at the cell surface and in released membrane vesicles. FASEB J 17:292–294

    PubMed  CAS  Google Scholar 

  19. Gutwein P, Stoeck A, Riedle S, Gast D, Runz S, Condon TP, Marmé A, Phong MC, Linderkamp O, Skorokhod A, Altevogt P (2005) Cleavage of L1 in exosomes and apoptotic membrane vesicles released from ovarian carcinoma cells. Clin Cancer Res 11(7):2492–2501. doi:10.1158/1078-0432.CCR-04-1688

    Article  PubMed  CAS  Google Scholar 

  20. Maretzky T, Schulte M, Ludwig A, Rose-John S, Blobel C, Hartmann D, Altevogt P, Saftig P, Reiss K (2005) L1 is sequentially processed by two differently activated metalloproteases and presenilin/gamma-secretase and regulates neural cell adhesion, cell migration, and neurite outgrowth. Mol Cell Biol 25:9040–9053. doi:10.1128/MCB.25.20.9040-9053

    Article  PubMed  CAS  Google Scholar 

  21. Stoeck A, Keller S, Riedle S, Sanderson MP, Runz S, Le Naour F, Gutwein P, Ludwig A, Rubinstei E, Alevogt P (2006) A role for exosomes in the constitutive and stimulus-induced ectodomain cleavage of L1 and CD44. Biochem J 393:609–618. doi:10.1042/BJ20051013

    Article  PubMed  CAS  Google Scholar 

  22. Itoh K, Fushiki S, Kamiguchi H, Arnold B, Altevogt P, Lemmon V (2005) Disrupted Schwann cell–axon interactions in peripheral nerves of mice with altered L1–integrin interactions. Mol Cell Neurosci 30(4):624–629. doi:10.1016/j.mcn.2005.06.006

    PubMed  CAS  Google Scholar 

  23. Liljelund P, Ghosh P, van den Pol AN (1994) Expression of the neural axon adhesion molecule L1 in the developing and adult rat brain. J Biol Chem 269(52):32886–32895

    PubMed  CAS  Google Scholar 

  24. Yamasaki M, Thompson P, Lemmon V (1997) CRASH syndrome: mutations in L1CAM correlate with severity of the disease. Neuropediatrics 28(3):175–178

    Article  PubMed  CAS  Google Scholar 

  25. Webb DJ, Donais K, Whitmore LA, Thomas SM, Turner CE, Parsons JT, Horwitz AF (2004) FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat Cell Biol 6(2):154–161. doi:10.1038/ncb1094

    Article  PubMed  CAS  Google Scholar 

  26. Mitra SK, Hanson DA, Schlaepfer DD (2005) Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol 6(1):56–68. doi:10.1038/nrm154

    Article  PubMed  CAS  Google Scholar 

  27. Ebeling O, Duczmal A, Aigner S, Geiger C, Schollhammer S, Kemshead JT, Moller P, Schwartz-Albiez R, Altevogt P (1996) L1 adhesion molecule on human lymphocytes and monocytes: expression and involvement in binding to alpha v beta 3 integrin. Eur J Immunol 26:2508–2516

    Article  PubMed  CAS  Google Scholar 

  28. Montgomery AM, Becker JC, Siu CH, Lemmon VP, Cheresh DA, Pancook JD, Zhao X, Reisfeld RA (1996) Human neural cell adhesion molecule L1 and rat homologue NILE are ligands for integrins αvβ3. J Cell Biol 132:475–485

    Article  PubMed  CAS  Google Scholar 

  29. Ruppert M, Aigner S, Hubble M, Yagita H, Altevogt P (1995) The L1 adhesion molecule is a cellular ligand for VLA-5. J Cell Biol 131:1881–1891

    Article  PubMed  CAS  Google Scholar 

  30. Kadmon G, Altevogt P (1997) The cell adhesion molecule L1: species- and cell-type-dependent multiple binding mechanisms. Differentiation 61(3):143–150. doi:10.1046/j.1432-0436.1997.6130143.x

    Article  PubMed  CAS  Google Scholar 

  31. Stein GH (1979) T98G: an anchorage-independent human tumor cell line that exhibits stationary phase G1 arrest in vitro. J Cell Physiol 99(1):43–54

    Article  PubMed  CAS  Google Scholar 

  32. Pontén J, Macintyre EH (1968) Long term culture of normal and neoplastic human glia. Acta Pathol Microbiol Scand 74(4):465–486

    Article  PubMed  Google Scholar 

  33. Moscovici H, Moscovici MG, Jimenez H, Lai MM, Hayman MJ, Vogt PK (1977) Continuous tissue culture cell lines derived from chemically induced tumors of Japanese quail. Cell 11(1):95–103. doi:10.1016/0092-8674(77)90320-8

    Article  PubMed  CAS  Google Scholar 

  34. Tjio JH, Puck TT (1958) Genetics of somatic mammalian cells. II. Chromosomal constitution of cells in tissue culture. J Exp Med 108:259–271

    Article  PubMed  CAS  Google Scholar 

  35. Chen C, Okayama H (1987) High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol 7(8):2745–2752

    PubMed  CAS  Google Scholar 

  36. Li Y, Galileo DS (2010) Soluble L1CAM promotes breast cancer cell adhesion and migration in vitro, but not invasion. Cancer Cell Int 10(1):34 [Epub ahead of print]

    Article  PubMed  Google Scholar 

  37. Van Tine BA, Kappes JC, Banerjee NS, Knops J, Lai L, Steenbergen RD, Meijer CL, Snijders PJ, Chatis P, Broder TR, Moen PT Jr, Chow LT (2004) Clonal selection for transcriptionally active viral oncogenes during progression to cancer. J Virol 78(20):11172–11186. doi:10.1128/JVI.78.20.11172-11186.2004

    Article  PubMed  Google Scholar 

  38. Chen W, Wu X, Levasseur DN, Liu H, Lai L, Kappes JC, Townes TM (2000) Lentiviral vector transduction of hematopoietic stem cells that mediate long-term reconstitution of lethally irradiated mice. Stem Cells 18(5):352–359. doi:10.1634/stemcells.18-5-352

    Article  PubMed  CAS  Google Scholar 

  39. Cretu A, Fotos JS, Little BW, Galileo DS (2005) Human and rat glioma growth, invasion, and vascularization in a novel chick embryo brain tumor model. Clin Exp Metastasis 22(3):225–236. doi:10.1007/s10585-005-7889-x

    Article  PubMed  Google Scholar 

  40. Fotos JS, Patel VP, Karin NJ, Temburni MK, Koh JT, Galileo DS (2006) Automated time-lapse microscopy and high-resolution tracking of cell migration. Cytotechnology 51(1):7–19. doi:10.1007/s10616-006-9006-7

    Article  PubMed  Google Scholar 

  41. Raposo G, Nijman HW, Stoorvogel W, Leijendekkerr R, Harding CV, Melief CJM, Geuze HJ (1996) B Lymphocytes secrete antigen-presenting vesicles. J Exp Med 183:1161–1172

    Article  PubMed  CAS  Google Scholar 

  42. Gavert N, Conacci-Sorrell M, Gast D, Schneider A, Altevogt P, Brabletz T, Ben-Ze’ev A (2005) L1, a novel target of beta-catenin signaling, transforms cells and is expressed at the invasive front of colon cancers. J Cell Biol 168:633–642. doi:10.1083/jcb.200408051

    Article  PubMed  CAS  Google Scholar 

  43. Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR (2003) Cell migration: integrating signals from front to back. Science 302(5651):1704–1709. doi:10.1126/science.1092053

    Article  PubMed  CAS  Google Scholar 

  44. Rubenstein M, Shaw M, Mirochnik Y, Slobodskov L, Glick R, Lichtor T, Chou P, Guinan P (1999) In vivo establishment of T98G human glioblastoma. Methods Find Exp Clin Pharmacol 21(6):391. doi:10.1358/mf.1999.21.6.541918

    Article  PubMed  CAS  Google Scholar 

  45. Smith JS, Jenkins RB (2000) Genetic alterations in adult diffuse glioma: occurrence, significance, and prognostic implications. Front Biosci 5:D213–D231

    Article  PubMed  CAS  Google Scholar 

  46. Stiles CD, Rowitch DH (2008) Glioma stem cells: a midterm exam. Neuron 58(6):832–846. doi:10.1016/j.neuron,2008.05.031

    Article  PubMed  CAS  Google Scholar 

  47. Tsuzuki T, Izumoto S, Ohnishi T, Hiraga S, Arita N, Hayakawa T (1998) Neural cell adhesion molecule L1 in gliomas: correlation with TGF-β and p53. J Clin Pathol 51:13–17. doi:10.1136/jcp.51.1.13

    Article  PubMed  CAS  Google Scholar 

  48. Yamanaka R, Tanaka R, Yoshida S (1993) Effects of irradiation on the expression of the adhesion molecules (NCAM, ICAM-1) by glioma cell lines. Neurol Med Chir (Tokyo) 33(11):749–752

    Article  CAS  Google Scholar 

  49. Izumoto S, Ohnishi T, Arita N, Hiraga S, Taki T, Hayakawa T (1996) Gene expression of neural cell adhesion molecule L1 in malignant gliomas and biological significance of L1 in glioma invasion. Cancer Res 56(6):1440–1444

    PubMed  CAS  Google Scholar 

  50. Ohnishi T, Matsumura H, Izumoto S, Hiraga S, Hayakawa T (1998) A novel model of glioma cell invasion using organotypic brain slice culture. Cancer Res 58(14):2935–2940

    PubMed  CAS  Google Scholar 

  51. Suzuki T, Izumoto S, Fujimoto Y, Maruno M, Ito Y, Yoshimine T (2005) Clinicopathological study of cellular proliferation and invasion in gliomatosis cerebri: important role of neural cell adhesion molecule L1 in tumour invasion. J Clin Pathol 58(2):166–171. doi:10.1136/jcp.2004.020909

    Article  PubMed  CAS  Google Scholar 

  52. Shtutman M, Levina E, Ohouo P, Baig M, Roninson IB (2006) Cell adhesion molecule L1 disrupts E-cadherin-containing adherens junctions and increases scattering and motility of MCF7 breast carcinoma cells. Cancer Res 66(23):11370–11380. doi:10.1158/0008-5472.CAN-06-2106

    Article  PubMed  CAS  Google Scholar 

  53. Meier F, Busch S, Gast D, Göppert A, Altevogt P, Maczey E, Riedle S, Garbe C, Schittek B (2006) The adhesion molecule L1 (CD171) promotes melanoma progression. Int J Cancer 119(3):549–555. doi:10.1002/ijc.21880

    Article  PubMed  CAS  Google Scholar 

  54. Gavert N, Sheffer M, Raveh S, Spaderna S, Shtutman M, Brabletz T, Barany P, Notterman D, Domany E, Ben-Ze’ev A (2007) Expression of L1-CAM and ADAM10 in human colon cancer cells induces metastasis. Cancer Res 67:16. doi:10.1158/0008-5472.CAN-07-0991

    Article  Google Scholar 

  55. Thies A, Schachner M, Moll I, Berger J, Schulze HJ, Brunner G, Schumacher U (2002) Overexpression of the cell adhesion molecule L1 is associated with metastasis in cutaneous malignant melanoma. Eur J Cancer 38:1708–1716. doi:10.1016/S0959-8049(02)00105-3

    Article  PubMed  CAS  Google Scholar 

  56. Bao S, Wu Q, Li Z, Sathornsumetee S, Wang H, McLendon RE, Hjelmeland AB, Rich JN (2008) Targeting cancer stem cells through L1CAM suppresses glioma growth. Cancer Res 68(15):6043–6048. doi:10.1158/0008-5472.CAN-08-1079

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by grant Number 2 P20 RR016472 under the INBRE program of the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH) and by research resources of the Genetically Defined Microbe and Expression Core of the UAB mucosal HIV and Immunology Center (R24DK64400). We thank Dr. Kirk Czymmek at the U.D. Bio-Imaging center for assistance with confocal microscopy, Dr. Ulhas Naik (U.D.) for MDA-MB-231 cells, Dr. Robert Sikes (U.D.) for 293T/17 cells, and Dr. Vance Lemmon (U. of Miami) for the hL1-pcDNA3 vector.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deni S. Galileo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, M., Li, Y., Chilukuri, K. et al. L1 stimulation of human glioma cell motility correlates with FAK activation. J Neurooncol 105, 27–44 (2011). https://doi.org/10.1007/s11060-011-0557-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-011-0557-x

Keywords

Navigation