Skip to main content
Log in

Combined gene expression and protein interaction analysis of dynamic modularity in glioma prognosis

  • Laboratory Investigation - Human/Animal Tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Because of the variety of factors affecting glioma prognosis, prediction of patient survival is particularly difficult. Protein–protein interaction (PPI) networks have been considered with regard to how their spatial characteristics relate to glioma. However, the dynamic nature of PPIs in vivo makes them temporally and spatially complex events. Integration of prognosis-specific co-expression information adds further dynamic features to these networks. Although some biomarkers for glioma prognosis have been identified, none is sufficient for accurate prediction of either prognosis or improved survival. We have established co-expressed protein-interaction networks that integrate protein–protein interactions with glioma gene-expression profiles related to different survival times. Biomarkers related to glioma prognosis were identified by comparative analysis of the dynamic features of the glioma prognosis network, particularly subnetworks. Four significantly differently expressed genes (SDEGs) are upregulated and ten SDEGs downregulated as lifetime is extended. In addition, 97 enhanced differently co-expressed protein interactions (DCPIs) and 99 weakened DCPIs were associated with glioma patient lifetime extension. We propose a method for estimating glioma prognosis on the basis of the construction of a dynamic modular network. We have used this method to identify dynamic genes and interactions related to glioma prognosis. Among these, enhanced MYC expression was related to lifetime extension, as were interactions between E2F1 and RB1 and between EGFR and p38. This method is a novel means of studying the molecular mechanisms determining prognosis in glioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rainov NG, Dobberstein KU, Bahn H, Holzhausen HJ, Lautenschlager C, Heidecke V, Burkert W (1997) Prognostic factors in malignant glioma: influence of the overexpression of oncogene and tumor-suppressor gene products on survival. J Neurooncol 35:13–28

    Article  PubMed  CAS  Google Scholar 

  2. Taylor IW, Linding R, Warde-Farley D, Liu Y, Pesquita C, Faria D, Bull S, Pawson T, Morris Q, Wrana JL (2009) Dynamic modularity in protein-interaction networks predicts breast cancer outcome. Nat Biotechnol 27:199–204. doi:10.1038/nbt.1522

    Article  PubMed  CAS  Google Scholar 

  3. Yang J, Liao D, Wang Z, Liu F, Wu G (2011) Mammalian target of rapamycin signaling pathway contributes to glioma progression and patients’ prognosis. J Surg Res 168:97–102. doi:10.1016/j.jss.2009.06.025

    Article  PubMed  CAS  Google Scholar 

  4. Liu X, Tang H, Zhang Z, Li W, Wang Z, Zheng Y, Wu M, Li G (2011) POTEH hypomethylation, a new epigenetic biomarker for glioma prognosis. Brain Res 1391:125–131. doi:10.1016/j.brainres.2011.03.042

    Article  PubMed  CAS  Google Scholar 

  5. Wang C, Cao S, Yan Y, Ying Q, Jiang T, Xu K, Wu A (2010) TLR9 expression in glioma tissues correlated to glioma progression and the prognosis of GBM patients. BMC Cancer 10:415. doi:10.1186/1471-2407-10-415

    Article  PubMed  Google Scholar 

  6. Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I, Zeitlinger J, Jennings EG, Murray HL, Gordon DB, Ren B, Wyrick JJ, Tagne JB, Volkert TL, Fraenkel E, Gifford DK, Young RA (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298:799–804. doi:10.1126/science.1075090298/5594/799[pii]

    Article  PubMed  CAS  Google Scholar 

  7. Watson MA, Perry A, Budhraja V, Hicks C, Shannon WD, Rich KM (2001) Gene expression profiling with oligonucleotide microarrays distinguishes World Health Organization grade of oligodendrogliomas. Cancer Res 61:1825–1829

    PubMed  CAS  Google Scholar 

  8. Fuller GN, Hess KR, Rhee CH, Yung WK, Sawaya RA, Bruner JM, Zhang W (2002) Molecular classification of human diffuse gliomas by multidimensional scaling analysis of gene expression profiles parallels morphology-based classification, correlates with survival, and reveals clinically-relevant novel glioma subsets. Brain Pathol 12:108–116

    Article  PubMed  CAS  Google Scholar 

  9. Masica DL, Karchin R (2011) Correlation of somatic mutation and expression identifies genes important in human glioblastoma progression and survival. Cancer Res 71:4550–4561. doi:10.1158/0008-5472.CAN-11-0180

    Article  PubMed  CAS  Google Scholar 

  10. Boudreau CR, Yang I, Liau LM (2005) Gliomas: advances in molecular analysis and characterization. Surg Neurol 64:286–294; discussion 294

    Google Scholar 

  11. Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Nigro JM, Colman H, Soroceanu L, Williams PM, Modrusan Z, Feuerstein BG, Aldape K (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9:157–173. doi:10.1016/j.ccr.2006.02.019

    Article  PubMed  CAS  Google Scholar 

  12. Brown KR, Jurisica I (2005) Online predicted human interaction database. Bioinformatics 21:2076–2082. doi:10.1093/bioinformatics/bti273

    Article  PubMed  CAS  Google Scholar 

  13. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP (2003) Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 31:e15

    Article  PubMed  Google Scholar 

  14. Newman JR, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M, DeRisi JL, Weissman JS (2006) Single-cell proteomic analysis of S. Cerevisiae reveals the architecture of biological noise. Nature 441:840–846. doi:10.1038/nature04785

    Article  PubMed  CAS  Google Scholar 

  15. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98:5116–5121. doi:10.1073/pnas.091062498

    Article  PubMed  CAS  Google Scholar 

  16. Larsson O, Wahlestedt C, Timmons JA (2005) Considerations when using the significance analysis of microarrays (SAM) algorithm. BMC Bioinformatics 6:129. doi:10.1186/1471-2105-6-129

    Article  PubMed  Google Scholar 

  17. Jin R, McCallen S, Liu CC, Xiang Y, Almaas E, Zhou XJ (2009) Identifying dynamic network modules with temporal and spatial constraints. Pac Symp Biocomput: 203–214

  18. Suzuki H (2006) Protein–protein interactions in the mammalian brain. J Physiol 575:373–377. doi:10.1113/jphysiol.2006.115717

    Article  PubMed  CAS  Google Scholar 

  19. Yao C, Li H, Zhou C, Zhang L, Zou J, Guo Z (2010) Multi-level reproducibility of signature hubs in human interactome for breast cancer metastasis. BMC Syst Biol 4:151. doi:10.1186/1752-0509-4-151

    Article  PubMed  Google Scholar 

  20. Sano M, Genkai N, Yajima N, Tsuchiya N, Homma J, Tanaka R, Miki T, Yamanaka R (2006) Expression level of ECT2 proto-oncogene correlates with prognosis in glioma patients. Oncol Rep 16:1093–1098

    PubMed  CAS  Google Scholar 

  21. Genkai N, Homma J, Sano M, Tanaka R, Yamanaka R (2006) Increased expression of pituitary tumor-transforming gene (PTTG)-1 is correlated with poor prognosis in glioma patients. Oncol Rep 15:1569–1574

    PubMed  CAS  Google Scholar 

  22. Sun B, Chu D, Li W, Chu X, Li Y, Wei D, Li H (2009) Decreased expression of NDRG1 in glioma is related to tumor progression and survival of patients. J Neurooncol 94:213–219. doi:10.1007/s11060-009-9859-7

    Article  PubMed  CAS  Google Scholar 

  23. Wang Y, Weil BR, Herrmann JL, Abarbanell AM, Tan J, Markel TA, Kelly ML, Meldrum DR (2009) MEK, p38, and PI-3K mediate cross talk between EGFR and TNFR in enhancing hepatocyte growth factor production from human mesenchymal stem cells. Am J Physiol Cell Physiol 297:C1284–C1293. doi:10.1152/ajpcell.00183.2009

    Article  PubMed  CAS  Google Scholar 

  24. De Carli E, Wang X, Puget S (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:2248; author reply 2249. doi:10.1056/NEJMc090593

  25. Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L, Bromberg JE, Hau P, Mirimanoff RO, Cairncross JG, Janzer RC, Stupp R (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003. doi:10.1056/NEJMoa043331

    Article  PubMed  CAS  Google Scholar 

  26. Durand KS, Guillaudeau A, Weinbreck N, DeArmas R, Robert S, Chaunavel A, Pommepuy I, Bourthoumieu S, Caire F, Sturtz FG, Labrousse FJ (2010) 1p19q LOH patterns and expression of p53 and Olig2 in gliomas: relation with histological types and prognosis. Mod Pathol 23:619–628. doi:10.1038/modpathol.2009.185

    Article  PubMed  CAS  Google Scholar 

  27. Crowe DL, Nguyen DC (2001) Rb and E2F–1 regulate telomerase activity in human cancer cells. Biochim Biophys Acta 1518:1–6. doi:10.1016/S0167-4781(00)00296-7

    PubMed  CAS  Google Scholar 

  28. Xu K, Shu HK (2007) EGFR activation results in enhanced cyclooxygenase-2 expression through p38 mitogen-activated protein kinase-dependent activation of the Sp1/Sp3 transcription factors in human gliomas. Cancer Res 67:6121–6129. doi:10.1158/0008-5472.CAN-07-0141

    Article  PubMed  CAS  Google Scholar 

  29. Ventura JJ, Tenbaum S, Perdiguero E, Huth M, Guerra C, Barbacid M, Pasparakis M, Nebreda AR (2007) p38alpha MAP kinase is essential in lung stem and progenitor cell proliferation and differentiation. Nat Genet 39:750–758. doi:10.1038/ng2037

    Article  PubMed  CAS  Google Scholar 

  30. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279:349–352

    Article  PubMed  CAS  Google Scholar 

  31. Kanaya T, Kyo S, Hamada K, Takakura M, Kitagawa Y, Harada H, Inoue M (2000) Adenoviral expression of p53 represses telomerase activity through down-regulation of human telomerase reverse transcriptase transcription. Clin Cancer Res 6:1239–1247

    PubMed  CAS  Google Scholar 

  32. Chandra H, Reddy PJ, Srivastava S (2011) Protein microarrays and novel detection platforms. Expert Rev Proteomics 8:61–79. doi:10.1586/epr.10.99

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lizhuang Yang.

Additional information

Xiaoyu Zhang and Hongbin Yang contributed equally to this work.

Electronic supplementary material

Below are the links to the electronic supplementary material.

Supplementary material 1 (DOC 715 kb)

Supplementary material 2 (XLS 22 kb)

Supplementary material 3 (XLS 39 kb)

Online Resource 4

Supplementary material 4. Dynamic observation of a protein–protein interaction (PPI) network in relation to survival time prognosis: (a) Nodes represent proteins and edges denote PPIs. This is a large size, small-world network. (b) The power law of the network with decreasing connectivity distribution (R 2 = 0.917). (c) 99.27% of shortest path lengths are ≤6. (TIFF 2434 kb)

Supplementary material 5 (XLS 42 kb)

Supplementary material 6 (XLS 22 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Yang, H., Gong, B. et al. Combined gene expression and protein interaction analysis of dynamic modularity in glioma prognosis. J Neurooncol 107, 281–288 (2012). https://doi.org/10.1007/s11060-011-0757-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-011-0757-4

Keywords

Navigation