Skip to main content
Log in

Differences in Susceptibility of MBP Charge Isomers to Digestion by Stromelysin-1 (MMP-3) and Release of an Immunodominant Epitope

  • ORIGINAL PAPER
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Charge microheterogeneity of myelin basic protein is known to affect its conformation and function. Here, the citrullinated myelin basic protein charge isomer, component-8, was shown to be more susceptible to stromelysin-1 cleavage than myelin basic protein component-1. Since levels of component-8 are increased in multiple sclerosis brain, the increased susceptibility of component-8 to proteolytic digestion may play a role in the pathogenesis of multiple sclerosis. Interestingly, component-1 isolated from multiple sclerosis patients was digested at a faster rate by stromelysin-1 than component-1 isolated from normal individuals. The reason for this difference is not clear, but likely reflects conformational differences between the two proteins as a result of post-translational modifications. Stromelysin-1 was able to cleave myelin basic protein in the presence of lipids and within the context of myelin and released several peptides including peptides containing the immunodominant epitope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Frohman EM, Racke MK, Raine CS (2006) Multiple sclerosis—the plaque and its pathogenesis. N Engl J Med 354:942–955

    Article  PubMed  CAS  Google Scholar 

  2. Hafler DA (2004) Multiple sclerosis. J Clin Invest 113:788–794

    PubMed  CAS  Google Scholar 

  3. Hallpike JF, Adams CWM (1969) Proteolysis and myelin breakdown: a review of recent histochemical and biochemical studies. Histochem J 1:559–578

    Article  PubMed  CAS  Google Scholar 

  4. Cuzner ML, Davison AN, Rudge P (1978) Proteolytic enzyme activity of blood leukocytes and cerebrospinal fluid in multiple sclerosis. Ann Neurol 4:337–344

    Article  PubMed  CAS  Google Scholar 

  5. Richards PT, Cuzner ML (1978) Proteolytic activity in CSF. Adv Exp Med Biol 100:521–527

    PubMed  CAS  Google Scholar 

  6. Avolio C, Ruggieri M, Giuliani F, Liuzzi GM, Leante R, Riccio P, Livrea P, Trojano M (2003) Serum MMP-2 and MMP-9 are elevated in different multiple sclerosis subtypes. J Neuroimmunol 136:46–53

    Article  PubMed  CAS  Google Scholar 

  7. Toft-Hansen H, Nuttall RK, Edwards DR, Owens T (2004) Key metalloproteinases are expressed by specific cell types in experimental autoimmune encephalomyelitis. J Immunol 173:5209–5218

    PubMed  CAS  Google Scholar 

  8. Kouwenhoven M, Ozenci V, Gomes A, Yarilin D, Giedraitis V, Press R, Link H (2001) Multiple sclerosis: elevated expression of matrix metalloproteinases in blood monocytes. J Autoimmun 16:463–470

    Article  PubMed  CAS  Google Scholar 

  9. Bar-Or A, Nuttall RK, Duddy M, Alter A, Kim HJ, Ifergan I, Pennington CJ, Bourgoin P, Edwards DR, Yong VW (2003) Analyses of all matrix metalloproteinase members in leukocytes emphasize monocytes as major inflammatory mediators in multiple sclerosis. Brain 126:2738–2749

    Article  PubMed  Google Scholar 

  10. Maeda A, Sobel RA (1996) Matrix metalloproteinases in the normal human central nervous system, microglial nodules, and multiple sclerosis lesions. J Neuropath Exp Neurol 55:300–309

    Article  PubMed  CAS  Google Scholar 

  11. Gijbels K, Proost P, Masure S, Carton H, Billiau A, Opdenakker G (1993) Gelatinase B is present in the cerebrospinal fluid during experimental autoimmune encephalomyelitis and cleaves myelin basic protein. J Neurosci Res 36:432–440

    Article  PubMed  CAS  Google Scholar 

  12. Chandler S, Coates R, Gearing A, Lury J, Wells G, Bone E (1995) Matrix metalloproteinases degrade myelin basic protein. Neurosci Lett 201:223–226

    Article  PubMed  CAS  Google Scholar 

  13. Proost P, Van Damme J, Opdenakker G (1993) Leukocyte gelatinase B cleavage releases encephalitogens from human myelin basic protein. Biochem Biophys Res Commun 192:1175–1181

    Article  PubMed  CAS  Google Scholar 

  14. Whitaker JN (1977) Myelin encephalitogenic protein fragments in cerebrospinal fluid of persons with multiple sclerosis. Neurology 27:911–920

    PubMed  CAS  Google Scholar 

  15. Whitaker JN, Lisak RP, Bashir RM, Fitch OH, Seyer JM, Krance R, Lawrence JA, Ch’ien LT, O’Sullivan P (1980) Immunoreactive myelin basic protein in the cerebrospinal fluid in neurological disorders. Ann Neurol 7:58–64

    Article  PubMed  CAS  Google Scholar 

  16. Adams CW (1975) The onset and progression of the lesion in multiple sclerosis. J Neurol Sci 25:165–182

    Article  PubMed  CAS  Google Scholar 

  17. Allegretta M, Nicklas JA, Sriram S, Albertini RJ (1990) T cells responsive to myelin basic protein in patients with multiple sclerosis. Science 247:718–721

    Article  PubMed  CAS  Google Scholar 

  18. Chandler S, Cossins J, Lury J, Wells G (1996) Macrophage metalloelastase degrades matrix and myelin proteins and processes a tumour necrosis factor-alpha fusion protein. Biochem Biophys Res Commun 228:421–429

    Article  PubMed  CAS  Google Scholar 

  19. Moscarello MA, Wood DD, Ackerley C, Boulias C (1994) Myelin in multiple sclerosis is developmentally immature. J Clin Invest 94:146–154

    Article  PubMed  CAS  Google Scholar 

  20. Wood DD, Bilbao JM, O’Connors P, Moscarello MA (1996) Acute multiple sclerosis (Marburg type) is associated with developmentally immature myelin basic protein. Ann Neurol 40:18–24

    Article  PubMed  CAS  Google Scholar 

  21. Wood DD, Moscarello MA (1989) The isolation, characterization, and lipid-aggregating properties of a citrulline containing myelin basic protein. J Biol Chem 264:5121–5127

    PubMed  CAS  Google Scholar 

  22. D’Souza CA, Mak B, Moscarello MA (2002) The up-regulation of stromelysin-1 (MMP-3) in a spontaneously demyelinating transgenic mouse precedes onset of disease. J Biol Chem 277:13589–13596

    Article  PubMed  CAS  Google Scholar 

  23. Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83:346–356

    Article  PubMed  CAS  Google Scholar 

  24. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  PubMed  CAS  Google Scholar 

  25. Groome N, Dawkes A, Barry R, Hruby S, Alvord E Jr (1988) New monoclonal antibodies reactive with defined sequential epitopes in human myelin basic protein. J Neuroimmunol 19:305–315

    Article  PubMed  CAS  Google Scholar 

  26. Kim JK, Mastronardi FG, Wood DD, Lubman DM, Zand R, Moscarello MA (2003) Multiple sclerosis: an important role for post-translational modifications of myelin basic protein in pathogenesis. Mol Cell Proteomics 2:453–462

    PubMed  CAS  Google Scholar 

  27. Sato S, Quarles RH, Brady RO (1982) Susceptibility of the myelin-associated glycoprotein and basic protein to a neutral protease in highly purified myelin from human and rat brain. J Neurochem 39:97–105

    Article  PubMed  CAS  Google Scholar 

  28. Fosang AJ, Neame PJ, Hardingham TE, Murphy G, Hamilton JA (1991) Cleavage of cartilage proteoglycan between G1 and G2 domains by stromelysins. J Biol Chem 266:15579–15582

    PubMed  CAS  Google Scholar 

  29. Murphy G, Cockett MI, Ward RV, Docherty AJ (1991) Matrix metalloproteinase degradation of elastin, type IV collagen and proteoglycan. A quantitative comparison of the activities of 95 kDa and 72 kDa gelatinases, stromelysins-1 and -2 and punctuated metalloproteinase (PUMP). Biochem J 277(Pt 1):277–279

    PubMed  CAS  Google Scholar 

  30. Knauper V, Wilhelm SM, Seperack PK, DeClerck YA, Langley KE, Osthues A, Tschesche H (1993) Direct activation of human neutrophil procollagenase by recombinant stromelysin. Biochem J 295(Pt 2):581–586

    PubMed  Google Scholar 

  31. Ogata Y, Enghild JJ, Nagase H (1992) Matrix metalloproteinase 3 (stromelysin) activates the precursor for the human matrix metalloproteinase 9. J Biol Chem 267:3581–3584

    PubMed  CAS  Google Scholar 

  32. Miyazaki K, Umenishi F, Funahashi K, Koshikawa N, Yasumitsu H, Umeda M (1992) Activation of TIMP-2/progelatinase A complex by stromelysin. Biochem Biophys Res Commun 185:852–859

    Article  PubMed  CAS  Google Scholar 

  33. Ribbens C, Andre B, Jaspar JM, Kaye O, Kaiser MJ, De Groote D, Malaise MG (2000) Matrix metalloproteinase-3 serum levels are correlated with disease activity and predict clinical response in rheumatoid arthritis. J Rheumatol 27:888–893

    PubMed  CAS  Google Scholar 

  34. Cheung NT, Dawes PT, Poulton KV, Ollier WE, Taylor DJ, Mattey DL (2000) High serum levels of pro-matrix metalloproteinase-3 are associated with greater radiographic damage and the presence of the shared epitope in patients with rheumatoid arthritis. J Rheumatol 27:882–887

    PubMed  CAS  Google Scholar 

  35. Yamanaka H, Matsuda Y, Tanaka M, Sendo W, Nakajima H, Taniguchi A, Kamatani N (2000) Serum matrix metalloproteinase 3 as a predictor of the degree of joint destruction during the six months after measurement, in patients with early rheumatoid arthritis. Arthritis Rheum 43:852–858

    Article  PubMed  CAS  Google Scholar 

  36. Betmouni S, Clements J, Perry VH (1999) Vacuolation in murine prion disease: an informative artifact. Curr Biol 9:R677–679

    Article  PubMed  CAS  Google Scholar 

  37. Cao L, Goodin R, Wood DD, Moscarello MA, Whitaker J (1999) Rapid release and unusual stability of immunodominant peptide 45–89 from citrullinated myelin basic protein. Biochem 38:6157–6163

    Article  CAS  Google Scholar 

  38. Beniac DR, Wood DD, Palaniyar N, Ottensmeyer FP, Moscarello MA, Harauz G (2000) Cryoelectron microscopy of protein-lipid complexes of human myelin basic protein charge isomers differing in degree of citrullination. J Struct Biol 129:80–95

    Article  PubMed  CAS  Google Scholar 

  39. Tsubata T, Takahashi K (1989) Limited proteolysis of bovine myelin basic protein by calcium-dependent proteinase from bovine spinal cord. J Biochem (Tokyo) 105:23–28

    CAS  Google Scholar 

  40. Ramwani JJ, Epand RM, Moscarello MA (1989) Secondary structure of charge isomers of myelin basic protein before and after phosphorylation. Biochem 28:6538–6543

    Article  CAS  Google Scholar 

  41. D’Souza CA, Wood DD, She YM, Moscarello MA (2005) Autocatalytic cleavage of myelin basic protein: an alternative to molecular mimicry. Biochem 44:12905–13913

    Article  CAS  Google Scholar 

  42. Pette M, Fujita K, Kitze B, Whitaker JN, Albert E, Kappos L, Wekerle H (1990) Myelin basic protein-specific T lymphocyte lines from MS patients and healthy individuals. Neurology 40:1770–1776

    PubMed  CAS  Google Scholar 

  43. Vergelli M, Kalbus M, Rojo SC, Hemmer B, Kalbacher H, Tranquill L, Beck H, McFarland HF, De Mars R, Long EO, Martin R (1997) T cell response to myelin basic protein in the context of the multiple sclerosis-associated HLA-DR15 haplotype: peptide binding, immunodominance and effector functions of T cells. J Neuroimmunol 77:195–203

    Article  PubMed  CAS  Google Scholar 

  44. Ota K, Matsui M, Milford EL, Mackin GA, Weiner HL, Hafler DA (1990) T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature 346:183–187

    Article  PubMed  CAS  Google Scholar 

  45. Valli A, Sette A, Kappos L, Oseroff C, Sidney J, Miescher G, Hochberger M, Albert ED, Adorini L (1993) Binding of myelin basic protein peptides to human histocompatibility leukocyte antigen class II molecules and their recognition by T cells from multiple sclerosis patients. J Clin Invest 91:616–628

    Article  PubMed  CAS  Google Scholar 

  46. Mazza G, Ponsford M, Lowrey P, Campbell MJ, Zajicek J, Wraith DC (2002) Diversity and dynamics of the T-cell response to MBP in DR2+ve individuals. Clin Exp Immunol 128:538–547

    Article  PubMed  CAS  Google Scholar 

  47. Meinl E, Weber F, Drexler K, Morelle C, Ott M, Saruhan-Direskeneli G, Goebels N, Ertl B, Jechart G, Giegerich G, et al (1993) Myelin basic protein-specific T lymphocyte repertoire in multiple sclerosis. Complexity of the response and dominance of nested epitopes due to recruitment of multiple T cell clones. J Clin Invest 92:2633–2643

    Article  PubMed  CAS  Google Scholar 

  48. Martin R, Jaraquemada D, Flerlage M, Richert J, Whitaker J, Long EO, McFarlin DE, McFarland HF (1990) Fine specificity and HLA restriction of myelin basic protein-specific cytotoxic T cell lines from multiple sclerosis patients and healthy individuals. J Immunol 145:540–548

    PubMed  CAS  Google Scholar 

  49. Bates IR, Matharu P, Ishiyama N, Rochon D, Wood DD, Polverini E, Moscarello MA, Viner NJ, Harauz G (2000) Characterization of a recombinant murine 18.5-kDa myelin basic protein. Protein Expr Purif 20:285–299

    Article  PubMed  CAS  Google Scholar 

  50. Azaryan A, Akopyan T, Buniatian H (1983) Cathepsin D from human brain: purification and multiple forms. Biomed Biochim Acta 42:1237–1246

    PubMed  CAS  Google Scholar 

  51. Kotter MR, Li W-W, Zhao C, Franklin RJM (2006) Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. J Neurosci 26:328–332

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Teresa Miani for expert technical assistance with preparation of myelin basic protein. This work was supported by a grant from the CIHR and the MS Society of Canada to M.A.M. Partial funding by the MS Society of Canada through a studentship to C.A.D. is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheryl A. D’Souza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Souza, C.A., Moscarello, M.A. Differences in Susceptibility of MBP Charge Isomers to Digestion by Stromelysin-1 (MMP-3) and Release of an Immunodominant Epitope. Neurochem Res 31, 1045–1054 (2006). https://doi.org/10.1007/s11064-006-9116-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9116-9

Keywords

Navigation