Skip to main content

Advertisement

Log in

Tetrahydrobiopterin Availability in Parkinson’s and Alzheimer’s Disease; Potential Pathogenic Mechanisms

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Within the central nervous system, tetrahydrobiopterin (BH4) is an essential cofactor for dopamine and serotonin synthesis. In addition, BH4 is now established to be an essential cofactor for all isoforms of nitric oxide synthase (NOS). Inborn errors of metabolism affecting BH4 availability are well documented and the clinical presentation can be attributed to a paucity of dopamine, serotonin, and nitric oxide (NO) generation. In this article, we have focussed upon the sensitivity of BH4 to oxidative catabolism and the observation that when BH4 is limiting some cellular sources of NOS may generate superoxide whilst other BH4 saturated NOS enzymes may be generating NO. Such a scenario could favor peroxynitrite generation. If peroxynitrite is not scavenged, e.g., by antioxidants such as reduced glutathione, irreversible damage to critical cellular enzymes could ensue. Such targets include components of the mitochondrial electron transport chain, alpha ketoglutarate dehydrogenase and possibly pyruvate dehydrogenase. Such a cascade of events is hypothesized, in this article, to occur in neurodegerative conditions such as Parkinson’s and Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kaufman S (1997) Tetrahydrobiopterin. basic biochemistry and role in human disease. John Hopkins University Press, Baltimore and London

    Google Scholar 

  2. Maita N, Hatakeyama K, Okada K, Hakoshima T (2004) Structural basis of biopterin induced inhibition of GTP cyclohydrolase I by GFRP, its feedback regulatory protein. J Biol Chem 279(49):51534–51540

    Article  PubMed  CAS  Google Scholar 

  3. Gross SS, Levi R (1992) Tetrahydrobiopterin synthesis. an absolute requirement for cytokine-induced nitric oxide generation by vascular smooth muscle. J Biol Chem 267(36):25722–25729

    PubMed  CAS  Google Scholar 

  4. Heales SJ, Lam AA, Duncan AJ, Land JM (2004) Neurodegeneration or neuroprotection: the pivotal role of astrocytes. Neurochem Res 29(3):513–519

    Article  PubMed  CAS  Google Scholar 

  5. Werner ER, Gorren AC, Heller R, Werner-Felmayer G, Mayer B (2003) Tetrahydrobiopterin and nitric oxide: mechanistic and pharmacological aspects. Exp Biol Med 228(11):1291–1302

    CAS  Google Scholar 

  6. Brand MP, Heales SJ, Land JM, Clark JB (1995) Tetrahydrobiopterin deficiency and brain nitric oxide synthase in the hph1 mouse. J Inherit Metab Dis 18(1):33–39

    Article  PubMed  CAS  Google Scholar 

  7. Heales SJ, Canevari L, Brand MP, Clark JB, Land JM, Hyland K (1999) Cerebrospinal fluid nitrite plus nitrate correlates with tetrahydrobiopterin concentration. J Inherit Metab Dis 22(3):221–223

    Article  PubMed  CAS  Google Scholar 

  8. Zorzi G, Thony B, Blau N (2002) Reduced nitric oxide metabolites in CSF of patients with tetrahydrobiopterin deficiency. J Neurochem 80(2):362–364

    Article  PubMed  CAS  Google Scholar 

  9. Heales SJ, Blair JA, Meinschad C, Ziegler I (1988) Inhibition of monocyte luminol-dependent chemiluminescence by tetrahydrobiopterin, and the free radical oxidation of tetrahydrobiopterin, dihydrobiopterin and dihydroneopterin. Cell Biochem Funct 6(3):191–195

    Article  PubMed  CAS  Google Scholar 

  10. Gramsbergen JB, Sandberg M, Moller Dall A, Kornblit B, Zimmer J (2002) Glutathione depletion in nigrostriatal slice cultures: GABA loss, dopamine resistance and protection by the tetrahydrobiopterin precursor sepiapterin. Brain Res 935(1–2):47–58

    Article  PubMed  CAS  Google Scholar 

  11. Lovenberg W, Levine RA, Robinson DS, Ebert M, Williams AC, Calne DB (1979) Hydroxylase cofactor activity in cerebrospinal fluid of normal subjects and patients with Parkinson’s disease. Science 204(4393):624–626

    Article  PubMed  CAS  Google Scholar 

  12. Williams AC, Levine RA, Chase TN, Lovenberg W, Calne DB (1980) CFS hydroxylase cofactor levels in some neurological diseases. J Neurol Neurosurg Psychiatr 43(8):735–738

    PubMed  CAS  Google Scholar 

  13. Barford PA, Blair JA, Eggar C, Hamon C, Morar C, Whitburn SB (1984) Tetrahydrobiopterin metabolism in the temporal lobe of patients dying with senile dementia of Alzheimer type. J Neurol Neurosurg Psychiatr 47(7):736–738

    Article  PubMed  CAS  Google Scholar 

  14. Sawada M, Hirata Y, Arai H, Iizuka R, Nagatsu T (1987) Tyrosine hydroxylase, tryptophan hydroxylase, biopterin, and neopterin in the brains of normal controls and patients with senile dementia of Alzheimer type. J Neurochem 48(3):760–764

    Article  PubMed  CAS  Google Scholar 

  15. Hunot S, Boissiere F, Faucheux B, Brugg B, Mouatt-Prigent A, Agid Y, Hirsch EC (1996) Nitric oxide synthase and neuronal vulnerability in Parkinson’s disease. Neuroscience 72(2):355–363

    Article  PubMed  CAS  Google Scholar 

  16. Good PF, Hsu A, Werner P, Perl DP, Olanow CW (1998) Protein nitration in Parkinson’s disease. J Neuropathol Exp Neurol 57(4):338–342

    PubMed  CAS  Google Scholar 

  17. Qureshi GA, Baig S, Bednar I, Sodersten P, Forsberg G, Siden A (1995) Increased cerebrospinal fluid concentration of nitrite in Parkinson’s disease. Neuroreport 6(12):1642–1644

    Article  PubMed  CAS  Google Scholar 

  18. Jenner P, Dexter DT, Sian J, Schapira AH, Marsden CD (1992) Oxidative stress as a cause of nigral cell death in Parkinson’s disease and incidental Lewy body disease. the Royal Kings and Queens Parkinson’s disease research group. Ann Neurol 32(Suppl):S82–S87 (review)

    Article  PubMed  CAS  Google Scholar 

  19. Blair JA, Pearson AJ (1974) Kinetics and mechanisms of the autoxidation of the 2-amin-4-hydroxy-5,6,7,8-tetrahydropterins. J Chem Soc Perkin Trans II 80–88

    Google Scholar 

  20. Smith MA, Richey Harris PL, Sayre LM, Beckman JS, Perry G (1997) Widespread peroxynitrite-mediated damage in Alzheimer’s disease. J Neurosci 17(8):2653–2657

    PubMed  CAS  Google Scholar 

  21. Vodovotz Y, Lucia MS, Flanders KC, Chesler L, Xie QW, Smith TW, Weidner J, Mumford R, Webber R, Nathan C, Roberts AB, Lippa CF, Sporn MB (1996) Inducible nitric oxide synthase in tangle-bearing neurons of patients with Alzheimer’s disease. J Exp Med 184(4):1425–1433

    Article  PubMed  CAS  Google Scholar 

  22. Delgado-Esteban M, Almeida A, medina JM (2002) Tetrahydrobiopterin deficiency increases neuronal vulnerability to hypoxia. J Neurochem 82(5):1148–1159

    Article  PubMed  CAS  Google Scholar 

  23. Heales SJ, Bolanos JP (2002) Impairment of brain mitochondrial function by reactive nitrogen species: the role of glutathione in dictating susceptibility. Neurochem Int 40(6):469–474

    Article  PubMed  CAS  Google Scholar 

  24. Bolanos JP, Heales SJ, Land JM, Clark JB (1995) Effect of peroxynitrite on the mitochondrial respiratory chain: differential susceptibility of neurones and astrocytes in primary culture. J Neurochem 64(5):1965–1972

    Article  PubMed  CAS  Google Scholar 

  25. Park LC, Zhang H, Sheu KF, Calingasan NY, Kristal BS, Lindsay JG, Gibson GE (1999) Metabolic impairment induces oxidative stress, compromises inflammatory responses, and inactivates a key mitochondrial enzyme in microglia. J Neurochem 72(5):1948–1958

    Article  PubMed  CAS  Google Scholar 

  26. Curtius HC, Niederwieser A, Levine R, Muldner H (1984) Therapeutic efficacy of tetrahydrobiopterin in Parkinson’s disease. Adv Neurol 40:463–466

    PubMed  CAS  Google Scholar 

  27. Cai S, Alp NJ, McDonald D, Smith I, Kay J, Canevari L, Heales S, Channon KM (2002) GTP cyclohydrolase I gene transfer augments intracellular tetrahydrobiopterin in human endothelial cells: effects on nitric oxide synthase activity, protein levels and dimerisation. Cardiovasc Res 55(4):838–849

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Brain Research Trust and Medical Research Council (UK) who have supported our research into BH4 metabolism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon J. R. Heales.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foxton, R.H., Land, J.M. & Heales, S.J.R. Tetrahydrobiopterin Availability in Parkinson’s and Alzheimer’s Disease; Potential Pathogenic Mechanisms. Neurochem Res 32, 751–756 (2007). https://doi.org/10.1007/s11064-006-9201-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9201-0

Keywords

Navigation