Skip to main content

Advertisement

Log in

Early Temporal Changes in Ecto-Nucleotidase Activity after Cortical Stab Injury in Rat

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

During a variety of insults to the brain adenine nucleotides are released in large quantities from damaged cells, triggering multiple cellular responses to injury. Here, we evaluated changes in extracellular ATP, ADP and AMP hydrolysis at different times (0–24 hours) after unilateral cortical stab injury (CSI) in adult rats. Results demonstrated that 24 hours following CSI, ATP and ADP hydrolyzing activities were not significantly altered in injured cortex. Based on calculated V ATP/V ADP ratio it was concluded that ATP/ADP hydrolysis was primarily catalyzed by NTPDase1 enzyme form. In contrast, AMP hydrolysis, catalyzed by 5’-nucleotidase, was significantly reduced at least 4 hours following CSI. Kinetic analysis and Lineweaver-Burk transformation of the enzyme velocities obtained over the range of AMP concentrations (0.05–1.50 mM) revealed that inhibition of 5’-nucleotidase activity after CSI was of the uncompetitive type. Taken together our data suggest that injured tissue has reduced potential for extracellular metabolism of adenine nucleotides in early stages after CSI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659–797

    Article  PubMed  CAS  Google Scholar 

  2. Abbracchio MP, Burnstock G (1994) Purinoceptors: are there families of P2X and P2Y purinoceptors? Pharmacol Ther 64:445–475

    Article  PubMed  CAS  Google Scholar 

  3. Burnstock G (1972) Purinergic nerves. Pharmac Rev 24:509–581

    CAS  Google Scholar 

  4. Rathbone MP, Middlemiss PJ, Gysbers JW et al (1999) Trophic effects of purines in neurons and glial cells. Prog Neurobiol 59:663–690

    Article  PubMed  CAS  Google Scholar 

  5. Vizi ES, Liang SD, Sperlagh B et al (1997) Studies on the release and extracellular metabolism of endogenous ATP in rat superior cervical ganglion: support for neurotransmitter role of ATP. Neuroscience 79:893–903

    Article  PubMed  CAS  Google Scholar 

  6. Zimmermann H, Braun N (1999) Ecto-nucleotidases–molecular structures, catalytic properties, and functional roles in the nervous system. Prog Brain Res 120:371–385

    PubMed  CAS  Google Scholar 

  7. Kegel B, Braun N, Heine P et al (1997) An ecto-ATPase and an ecto-ATP diphosphohydrolase are expressed in rat brain. Neuropharmacology 36:1189–1200

    Article  PubMed  CAS  Google Scholar 

  8. Smith TM, Kirley TL (1998) Cloning, sequencing and expression of a human brain ecto-apyrase. Biochim Biophys Acta 1386:65–78

    PubMed  CAS  Google Scholar 

  9. Kukulski F, Komoszynski M (2003) Purification and characterization of NTPDase 1 (ecto-apyrase) and NTPDase 2 (ecto-ATPase) from porcine brain cortex synaptosomes. Eur J Biochem 270:3447–3454

    Article  PubMed  CAS  Google Scholar 

  10. Zimmermann H (1996) Biochemistry, localization and functional roles of ecto-nucleotidases in the nervous system. Prog Neurobiol 49:589–618

    Article  PubMed  CAS  Google Scholar 

  11. Fredholm BB, Abbracchio MP, Burnstock G et al (1994) Nomenclature and classification of purinoceptors. Pharmacol Rev 46:143–156

    PubMed  CAS  Google Scholar 

  12. Melani A, Turchi D, Vannucchi MG et al (2005) ATP extracellular concentrations are increased in the rat striatum during in vivo ischemia. Neurochem Int 47:442–448

    Article  PubMed  CAS  Google Scholar 

  13. Zimmermann H (1994) Signaling via ATP in the nervous system. Trends Neurosci 17:420–426

    Article  PubMed  CAS  Google Scholar 

  14. Fields RD, Burnstock G (2006) Purinergic signaling in neuron-glia interactions. Nat Rev Neurosci 7:423–436

    Article  PubMed  CAS  Google Scholar 

  15. Rathbone MP, Middlemiss PJ, Kim JK et al (1992) Adenosine and its nucleotides stimulate proliferation of chick astrocytes and human astrocytoma cells. Neurosci Res 13:1–17

    Article  PubMed  CAS  Google Scholar 

  16. Middlemiss PJ, Gysbers JW, Rathbone MP (1995) Extracellular guanosine and guanosine-5’-triphosphate increase: NGF synthesis and release from cultured mouse neopallial astrocytes. Brain Res 677:152–156

    Article  PubMed  CAS  Google Scholar 

  17. Ferrari D, Chiozzi P, Falzoni S et al (1997) ATP-mediated cytotoxicity in microglial cells. Neuropharmacol 36:1295–1301

    Article  CAS  Google Scholar 

  18. Neary JT, Kang Y, Shi YF et al (2006) P2 receptor signalling, proliferation of astrocytes, expression of molecules involved in cell-cell interactions. Novarstis Found Symp 276:131–143

    Article  CAS  Google Scholar 

  19. Sorimachi M, Yamagami K, Wakomori M (2002) Activation of ATP receptor increases the cytosolic Ca(2+) concentration in ventral tegmental area neurons of rat brain. Brain Res 935:129–133

    Article  PubMed  CAS  Google Scholar 

  20. Inoue K, Koizumi S, Nakazawa K (1995) Glutamate-evoked release of adenosine 5’-triphosphate causing an increase in intracellular calcium in hippocampal neurons. Neuroreport 6:437–440

    Article  PubMed  CAS  Google Scholar 

  21. Nedeljkovic N, Bjelobaba I, Subasic S et al (2006) Up-regulation of ectonucleotidase activity after cortical stab injury in rats. Cell Biol Int 30:541–546

    Article  PubMed  CAS  Google Scholar 

  22. Nagy AK, Walton NY, Treiman DM (1997) Reduced cortical ecto-ATPase activity in rat brains during prolonged status epilepticus induced by sequential administration of lithium and pilocarpine. Mol Chem Neuropathol 31:135–147

    Article  PubMed  CAS  Google Scholar 

  23. Bonan CD, Walz R, Pereira GS et al (2000) Changes in synaptosomal ectonucleotidase activities in two rat models of temporal lobe epilepsy. Epilepsy Res 39:229–238

    Article  PubMed  CAS  Google Scholar 

  24. Bonan CD, Amaral OB, Rockenbach IC et al (2000) Altered ATP hydrolysis induced by pentylentetrazol kindling in rat brain synaptosomes. Neurochem Res 25:775–779

    Article  PubMed  CAS  Google Scholar 

  25. Braun N, Zhu Y, Krieglstein J et al (1998) Upregulation of the enzyme chain hydrolyzing extracellular ATP after transient ferebrain ischemia in the rat. J Neurosci 18:4891–4900

    PubMed  CAS  Google Scholar 

  26. Villa RF, Gorini A, Hoyer S (2002) ATPases of synaptic plasma membranes from hippocampus after ischemia and recovery during aging. Neurochem Res 27:861–870

    Article  PubMed  CAS  Google Scholar 

  27. Neary JT, Rathbone MP, Cattabeni F et al (1996) Trophic actions of extracellular nucleotides and nucleosides on glial and neuronal cells. Trends Neurosci 19:13–18

    Article  PubMed  CAS  Google Scholar 

  28. Chen S, Pickard JD, Harris NG (2003) Time course of cellular pathology after controlled cortical impact injury. Exp Neurol 182:87–102

    Article  PubMed  CAS  Google Scholar 

  29. Braun N, Lenz C, Gillardon F et al (1997) Focal cerebral ischemia enhances glial expression of ecto-5’-nucleotidase. Brain Res 766:213–226

    Article  PubMed  CAS  Google Scholar 

  30. Gray EG, Whittaker VP (1962) The isolation of nerve endings from brain: an electron microscopic study of cell fragments derived by homogenization and centrifugation. J Anat 96:79–88

    PubMed  CAS  Google Scholar 

  31. Nedeljkovic N, Nikezic G, Horvat A et al (1998) Properties of Mg(2+)-ATPase rat brain synaptic plasma membranes. Gen Physiol Biophys 17:3–13

    PubMed  CAS  Google Scholar 

  32. Markwell MA, Haas SA, Lieber L et al (1978) A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87:206–210

    Article  PubMed  CAS  Google Scholar 

  33. Nedeljkovic N, Banjac A, Horvat A et al (2005) Developmental profile of NTPDase activity in synaptic plasma membranes isolated from rat cerebral cortex. Int J Dev Neurosci 23:45–51

    Article  PubMed  CAS  Google Scholar 

  34. Pennial R (1966) An improved method for determination of inorganic phosphate by the isobutanol-benzen extraction procedure. Anal Biochem 14:87–90

    Article  Google Scholar 

  35. Nedeljkovic N, Banjac A, Horvat A et al (2003) Ecto-ATPase and ecto-ATP-diphosphohydrolase are co-localized in rat hippocampal and caudate nucleus synaptic plasma membranes. Physiol Res 52:797–804

    PubMed  CAS  Google Scholar 

  36. Stone TW (2005) Adenosine, neurodegeneration and neuroprotection. Neurol Res 27:161–168

    Article  PubMed  CAS  Google Scholar 

  37. Davalos D, Grutzendler J, Yang G et al (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758

    Article  PubMed  CAS  Google Scholar 

  38. Van der Toorn A, Sykova E, Dijkhuizen RM et al (1996) Dynamic changes in water ADC, energy metabolism, extracellular space volume and tortuosity in neonatal brain during global ischemia. Magn Reson Med 36:52–60

    Article  PubMed  Google Scholar 

  39. Wang Y, Roman R, Lidofsky SD et al (1996) Autocrine signaling through ATP release represents a novel mechanism for cell volume regulation. Proc Natl Acad Sci USA 93:12020–12025

    Article  PubMed  CAS  Google Scholar 

  40. Burger RM, Lowenstein JM (1975) 5’-Nucleotidase from smooth muscle of small intestine and from brain. Inhibition of nucleotides. Biochemistry 14:2362–2366

    Article  PubMed  CAS  Google Scholar 

  41. Naito Y, Lowenstein JM (1985) 5’-Nucleotidase from rat heart membranes. Inhibition by adenine nucleotides and related compounds. Biochem J 226:645–651

    PubMed  CAS  Google Scholar 

  42. Gordon EL, Pearson JD, Slakey LL (1985) The hydrolysis of extracellular adenine nucleotides by cultured endothelial cells from pig aorta. Feed-forward inhibition of adenosine production at the cell surface. J Biol Chem 261:15496–15507

    Google Scholar 

  43. Navarro JM, Olmo N, Turnay J et al (1998) Ecto-5’-nucleotidase from a human colon adrenocarcinoma cell line. Correlation between enzyme activity and levels in intact cells. Mol Cell Biochem 187:121–131

    Article  PubMed  CAS  Google Scholar 

  44. James S, Richardson PJ (1993) The subcellular distribution of [3H]-CGS 21680 binding sites in the rat striatum: copurification with cholinergic nerve terminals. Neurochem Int 23:115–122

    Article  PubMed  CAS  Google Scholar 

  45. Delwing D, Delwing D, Sarkis JJ et al (2007) Proline induces alterations on nucleotide hydrolysis in synaptosomes from cerebral cortex of rats. Brain Res 1149:210–215

    Article  PubMed  CAS  Google Scholar 

  46. Dale N (1998) Delayed production of adenosine underlies temporal modulation of swimming in frog embryo. J Gen Physiol 511:265–272

    CAS  Google Scholar 

  47. During MJ, Spencer DD (1992) Adenosine: a potential mediator of seizure arrest and postictal refractoriness. Ann Neurol 32:618–624

    Article  PubMed  CAS  Google Scholar 

  48. Weigand MA, Michel A, Eckstein HH et al (1999) Adenosine: a sensitive indicator of cerebral ischemia during carotid endarterectomy. Anesthesiology 91:414–421

    Article  PubMed  CAS  Google Scholar 

  49. Clark RS, Carcillio JA, Kochanek PM et al (1997) Cerebrospinal fluid adenosine concentration and uncoupling of cerebral blood flow and oxidative metabolism after severe head injury in humans. Neurosurgery 41:1284–1292

    Article  PubMed  CAS  Google Scholar 

  50. Robertson CL, Bell MJ, Kochanek PM et al (2001) Increased adenosine in cerebrospinal fluid after severe traumatic brain injury in infants and children: association with severity of injury and excitotoxicity. Crit Care Med 29:2287–2293

    Article  PubMed  CAS  Google Scholar 

  51. Frenguelli BG, Wigmore G, Llaudet E et al (2007) Temporal and mechanistic dissociation of ATP and adenosine during ischemia in the mammalian hippocampus. J Neurochem 101:1400–1413

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by Serbian Ministry of Science, Grant No. 143005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadezda Nedeljkovic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nedeljkovic, N., Bjelobaba, I., Lavrnja, I. et al. Early Temporal Changes in Ecto-Nucleotidase Activity after Cortical Stab Injury in Rat. Neurochem Res 33, 873–879 (2008). https://doi.org/10.1007/s11064-007-9529-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9529-0

Keywords

Navigation