Skip to main content
Log in

A Prospective Study of Transsulfuration Biomarkers in Autistic Disorders

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

An Erratum to this article was published on 05 December 2008

Abstract

The goal of this study was to evaluate transsulfuration metabolites in participants diagnosed with autism spectrum disorders (ASDs). Transsulfuration metabolites, including: plasma reduced glutathione (GSH), plasma oxidized glutathione (GSSG), plasma cysteine, plasma taurine, plasma sulfate, and plasma free sulfate among participants diagnosed with ASDs (n = 38) in comparison to age-matched neurotypical controls were prospectively evaluated. Testing was conducted using Vitamin Diagnostics, Inc. (CLIA-approved). Participants diagnosed with ASDs had significantly (P < 0.001) decreased plasma reduced GSH, plasma cysteine, plasma taurine, plasma sulfate, and plasma free sulfate relative to controls. By contrast, participants diagnosed with ASDs had significantly (P < 0.001) increased plasma GSSG relative to controls. The present observations are compatible with increased oxidative stress and a decreased detoxification capacity, particularly of mercury, in patients diagnosed with ASDs. Patients diagnosed with ASDs should be routinely tested to evaluate transsulfuration metabolites, and potential treatment protocols should be evaluated to potentially correct the transsulfuration abnormalities observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Autism and Developmental Disabilities Monitoring Network Surveillance Year 2002 Principal Investigators; Centers for Disease Control and Prevention (2007) Prevalence of autism spectrum disorders-autism and developmental disabilities monitoring network, 13 sites, United States, 2002. MMWR Surveill Summ 56(1):12–28

    Google Scholar 

  2. Eigsti IM, Shapiro T (2003) A systems neuroscience approach to autism: biological, cognitive, and clinical perspectives. Ment Retard Dev Disabil Res Rev 9(3):205–215. doi:10.1002/mrdd.10081

    Article  PubMed  Google Scholar 

  3. White JF (2003) Intestinal pathophysiology in autism. Exp Biol Med (Maywood) 228(6):639–649

    CAS  Google Scholar 

  4. Sweeten TL, Bowyer SL, Posey DJ et al (2003) Increased prevalence of familial autoimmunity in probands with pervasive developmental disorders. Pediatrics 112(5):e420. doi:10.1542/peds.112.5.e420

    Article  PubMed  Google Scholar 

  5. Bolte S, Poustka F (2002) The relation between general cognitive level and adaptive behavior domains in individuals with autism with and without co-morbid mental retardation. Child Psychiat Hum Dev 33(2):165–172. doi:10.1023/A:1020734325815

    Article  PubMed  Google Scholar 

  6. Herbert MR, Russo JP, Yang S et al (2006) Autism and environmental genomics. Neurotoxicology 27(5):671–684. doi:10.1016/j.neuro.2006.03.017

    Article  PubMed  CAS  Google Scholar 

  7. James SJ, Melnyk S, Jernigan S et al (2006) Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism. Am J Med Genet B Neuropsychiatr Genet 141(8):947–956. doi:10.1002/ajmg.b.30366

    Google Scholar 

  8. Geier DA, Geier MR (2006) A clinical and laboratory evaluation of methionine cycle-transsulfuration and androgen pathway markers in children with autistic disorders. Horm Res 66(4):182–188. doi:10.1159/000094467

    Article  PubMed  CAS  Google Scholar 

  9. James SJ, Cutler P, Melnyk S et al (2004) Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am J Clin Nutr 80(6):1611–1617

    PubMed  CAS  Google Scholar 

  10. Waring RH, Klovrza LV (2000) Sulphur metabolism in autism. J Nutr Environ Med 10(1):25–32. doi:10.1080/13590840050000861

    Article  CAS  Google Scholar 

  11. Finkelstein JD (1998) The metabolism of homocysteine: pathways and regulation. Eur J Pediatr 157(Suppl 2):S40–S44. doi:10.1007/PL00014300

    Article  PubMed  CAS  Google Scholar 

  12. Schopler E, Reichler RJ, DeVellis RF et al (1980) Toward objective classification of childhood autism: Childhood Autism Rating Scale (CARS). J Autism Dev Disord 10(1):91–103. doi:10.1007/BF02408436

    Article  PubMed  CAS  Google Scholar 

  13. Bouligand J, Deroussent A, Paci A (2006) Liquid chromatography-tandem mass spectrometry assay of reduced and oxidized glutathione and main precursors in mice liver. J Chromatogr B Analyt Technol Biomed Life Sci 832(1):67–74. doi:10.1016/j.jchromb.2005.12.037

    Article  PubMed  CAS  Google Scholar 

  14. Han Q, Xu M, Tang L et al (2004) Homogeneous enzymatic colorimetric assay for total cysteine. Clin Chem 50(7):1229–1231. doi:10.1373/clinchem.2004.032920

    Article  PubMed  CAS  Google Scholar 

  15. Hopkins PC, Kay IS, Davies WE (1989) A rapid method for the determination of taurine in biological tissue. Neurochem Int 15(4):429–432. doi:10.1016/0197-0186(89)90160-5

    Article  CAS  Google Scholar 

  16. Chattaraj S, Das AK (1992) Indirect atomic absorption spectrometric determination of sulfate in human blood serum. Analyst (London) 117(3):413–416. doi:10.1039/an9921700413

    Article  CAS  Google Scholar 

  17. Boismenu D, Robitaille L, Hamadeh MJ (1998) Measurement of sulfate concentrations and tracer/tracee ratios in biological fluids by electrospray tandem mass spectrometry. Anal Biochem 261(1):93–99. doi:10.1006/abio.1998.2715

    Article  PubMed  CAS  Google Scholar 

  18. Watanabe N, Kamei S, Ohkubo A et al (1986) Urinary protein as measured with a pyrogallol red-molybdate complex, manually and in a Hitachi 726 automated analyzer. Clin Chem 32(8):1551–1554

    PubMed  CAS  Google Scholar 

  19. Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30(11):1191–1212. doi:10.1016/S0891-5849(01)00480-4

    Article  PubMed  CAS  Google Scholar 

  20. Dickinson DA, Moellering DR, Iles KE et al (2003) Cytoprotection against oxidative stress and the regulation of glutathione synthesis. Biol Chem 384(4):527–537. doi:10.1515/BC.2003.061

    Article  PubMed  CAS  Google Scholar 

  21. Klatt P, Lamas S (2000) Regulation of protein function by S-glutathiolation in response to oxidative and nitrosative stress. Eur J Biochem 267(16):4928–4944. doi:10.1046/j.1432-1327.2000.01601.x

    Article  PubMed  CAS  Google Scholar 

  22. Dickinson DA, Forman HJ (2002) Glutathione in defense and signaling: Lessons from a small thiol. Ann NY Acad Sci 973:488–504

    Article  PubMed  CAS  Google Scholar 

  23. Sagrista ML, Garcia AF, Africa De Madariaga M et al (2002) Antioxidant and pro-oxidant effect of the thiolic compounds N-acetyl-L-cysteine and glutathione against free radical-induced lipid peroxidation. Free Radic Res 36(3):329–340. doi:10.1080/10715760290019354

    Article  PubMed  CAS  Google Scholar 

  24. Deplancke B, Gaskins HR (2002) Redox control of the transsulfuration and glutathione biosynthesis pathways. Curr Opin Clin Nutr Metab Care 5(1):85–92. doi:10.1097/00075197-200201000-00015

    Article  PubMed  CAS  Google Scholar 

  25. Pastore A, Federici G, Bertini E et al (2003) Analysis of glutathione: Implication in redox and detoxification. Clin Chim Acta 333(1):19–39. doi:10.1016/S0009-8981(03)00200-6

    Article  PubMed  CAS  Google Scholar 

  26. Hall AG (1999) The role of glutathione in the regulation of apoptosis. Eur J Clin Invest 29(3):238–245. doi:10.1046/j.1365-2362.1999.00447.x

    Article  PubMed  CAS  Google Scholar 

  27. Griffith OW (1999) Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Radic Biol Med 27(9–10):922–935. doi:10.1016/S0891-5849(99)00176-8

    Article  PubMed  CAS  Google Scholar 

  28. Konstantareas MM, Homatidis S (1987) Ear infections in autistic and normal children. J Autism Dev Disord 17(4):585–594. doi:10.1007/BF01486973

    Article  PubMed  CAS  Google Scholar 

  29. Zimmerman AW, Jyonouchi H, Comi AM et al (2005) Cerebrospinal fluid and serum markers of inflammation in autism. Pediatr Neurol 33(3):195–201. doi:10.1016/j.pediatrneurol.2005.03.014

    Article  PubMed  Google Scholar 

  30. Horvath K, Perman JA (2002) Autistic disorder and gastrointestinal disease. Curr Opin Pediatr 14(5):583–587. doi:10.1097/00008480-200210000-00004

    Article  PubMed  Google Scholar 

  31. Jyonouchi H, Geng L, Ruby A et al (2005) Dysregulated innate immune responses in young children with autism spectrum disorders: Their relationship to gastrointestinal symptoms and dietary intervention. Neuropsychobiology 51(2):77–85. doi:10.1159/000084164

    Article  PubMed  Google Scholar 

  32. Yorbik O, Sayal A, Akay C et al (2002) Investigation of antioxidant enzymes in children with autistic disorder. Prostaglandins Leukot Essent Fatty Acids 67(5):341–343. doi:10.1054/plef.2002.0439

    Article  PubMed  CAS  Google Scholar 

  33. Chauhan A, Chauhan V, Brown WT et al (2004) Oxidative stress in autism: Increased lipid peroxidation and reduced serum levels of ceruloplasmin and transferring-the antioxidant proteins. Life Sci 75(21):2539–2549. doi:10.1016/j.lfs.2004.04.038

    Article  PubMed  CAS  Google Scholar 

  34. Zoroglu SS, Armutcu F, Ozen S et al (2004) Increased oxidative stress and altered activities of erythrocyte free radical scavenging enzymes in autism. Eur Arch Psychiatry Clin Neurosci 254(3):143–147. doi:10.1007/s00406-004-0456-7

    PubMed  Google Scholar 

  35. Ballatori N, Clarkson TW (1985) Biliary secretion of glutathione and of glutathione-metal complexes. Fundam Appl Toxicol 5(5):816–831. doi:10.1016/0272-0590(85)90165-4

    Article  PubMed  CAS  Google Scholar 

  36. Ookhtens M, Kaplowitz N (1998) Role of the liver in interorgan homeostasis of glutathione and cyst(e)ine. Semin Liver Dis 18(4):313–329

    Article  PubMed  CAS  Google Scholar 

  37. Alberti A, Pirrone P, Elia M et al (1999) Sulphation deficit in ‘low-functioning’ autistic children: a pilot study. Biol Psychiatry 46(3):420–424. doi:10.1016/S0006-3223(98)00337-0

    Article  PubMed  CAS  Google Scholar 

  38. Strous RD, Golubchik P, Maayan R et al (2005) Lowered DHEA-S plasma levels in adult individuals with autistic disorder. Eur Neuropsychopharmacol 15(3):305–309. doi:10.1016/j.euroneuro.2004.12.004

    Article  PubMed  CAS  Google Scholar 

  39. Yazbak FE, Lang-Radosh KL (2001) Increasing incidence of autism. Adverse Drug React Toxicol Rev 20(1):60–63

    PubMed  CAS  Google Scholar 

  40. McFadden SA (1996) Phenotypic variation in xenobiotic metabolism and adverse environmental response: focus on sulfur-dependent detoxification pathways. Toxicology 111(1–3):43–65. doi:10.1016/0300-483X(96)03392-6

    Article  PubMed  CAS  Google Scholar 

  41. Ahearn GA, Mandal PK, Mandal A (2004) Mechanisms of heavy-metal sequestration and detoxification in crustaceans: a review. J Comp Physiol [B] 174(6):439–452. doi:10.1007/s00360-004-0438-0

    CAS  Google Scholar 

  42. Lee A, Beck L, Brown RJ et al (1999) Identification of a mammalian brain sulfate transporter. Biochem Biophys Res Commun 263(1):123–129. doi:10.1006/bbrc.1999.0947

    Article  PubMed  CAS  Google Scholar 

  43. Parsons RB, Waring RH, Williams AC et al (2001) Cysteine dioxygenase: regional localization of protein and mRNA in rat brain. J Neurosci Res 65(1):78–84. doi:10.1002/jnr.1130

    Article  PubMed  CAS  Google Scholar 

  44. Kern JK, Jones AM (2006) Evidence of toxicity, oxidative stress, and neuronal insult in autism. J Toxicol Environ Health B Crit Rev 9(6):485–499. doi:10.1080/10937400600882079

    Article  PubMed  CAS  Google Scholar 

  45. Thomas DJ, Fisher HL, Sumler MR et al (1987) Sexual differences in the excretion of organic and inorganic mercury by methyl mercury-treated rats. Environ Res 43(1):203–216. doi:10.1016/S0013-9351(87)80072-5

    Article  PubMed  CAS  Google Scholar 

  46. Oliveira FR, Ferreira JR, dos Santos CM et al (2006) Estradiol reduces cumulative mercury and associated disturbances in the hypothalamus-piuitary axis of ovariectomized rats. Ecotoxicol Environ Saf 63(3):488–493. doi:10.1016/j.ecoenv.2004.12.024

    Article  PubMed  CAS  Google Scholar 

  47. Kane RE, Tector J, Brems JJ et al (1990) Sulfation and glucuronidation of acetaminophen by cultured hepatocytes replicating in vivo metabolism. ASAIO Trans 36(3):M607–M610

    PubMed  CAS  Google Scholar 

  48. Prudova A, Albin M, Bauman Z et al (2007) Testosterone regulation of homocysteine metabolism modulates redox status in human prostate cancer cells. Antioxid Redox Signal 9(11):1875–1881. doi:10.1089/ars.2007.1712

    Article  PubMed  CAS  Google Scholar 

  49. Clarkson TW, Nordberg GF, Sager PR (1985) Reproductive and developmental toxicity of metals. Scand J Work Environ Health 11(3 Spec No):145–154

    PubMed  CAS  Google Scholar 

  50. Geier DA, Geier MR (2007) A prospective assessment of androgen levels in patients with autistic spectrum disorders: biochemical underpinnings and suggested therapies. Neuroendocrinol Lett 28(5):565–573

    PubMed  CAS  Google Scholar 

  51. Rice D, Barone S Jr (2000) Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect 108(Suppl 3):511–533. doi:10.2307/3454543

    Article  PubMed  Google Scholar 

  52. Mutter J, Naumann J, Schneider R (2005) Mercury and autism: accelerating evidence? Neuroendocrinol Lett 26(5):439–446

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the generous help of Brandon Work at LabCorp, Dallas and the phlebotomists at Medical Center Plano, Outpatient Phlebotomy. The authors wish to acknowledge the help of the parents and children who participated in the study; without their participation this type of investigation would not be possible. Study Funding: This research was funded by a grant from the Autism Research Institute, non-profit CoMeD, Inc., and by the non-profit Institute of Chronic Illnesses, Inc., through a grant from the Brenen Hornstein Autism Research & Education (BHARE) Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. Geier.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11064-008-9888-1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geier, D.A., Kern, J.K., Garver, C.R. et al. A Prospective Study of Transsulfuration Biomarkers in Autistic Disorders. Neurochem Res 34, 386–393 (2009). https://doi.org/10.1007/s11064-008-9782-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9782-x

Keywords

Navigation