Skip to main content
Log in

Dopamine and Aging: Intersecting Facets

  • Review Article
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Aging encompasses life itself so understanding requires frameworks that forge unity amidst complexity. The free radical theory of aging is one example. The original focus on damage was augmented recently by appreciation that reactive oxygen and nitrogen species are essential to normal signaling and cell function. This paradigm is currently undergoing an explosive expansion fueled by the discovery that regulatory organization is a merry-go-round of redox cycling seamlessly fused to endogenous clocks. This might best be described as an “Electroplasmic Cycle.” This is certainly applicable to dopaminergic neurons with their exceptional metabolic, electrical and rhythmic properties. Here I review normal aging of dopamine systems to highlight them as a valuable model. I then examine the possible integration of free radical and ion channel theories of aging. Finally, I incorporate clocks and explore the multifaceted implications of electroplasmic cycles with special emphasis on dopamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ATr1 :

Angiotensin receptor 1

CBP:

CREB binding protein

Cry:

Cryptochrome

DA:

Dopamine

DAT:

Dopamine transport and reuptake protein

DAr1 :

Dopamine receptor 1

DAr2 :

Dopamine receptor 2

ER:

Endoplasmic reticulum

GH:

Growth hormone

GHRH:

Growth hormone releasing hormone

GSH:

Reduced glutathione

GSH-S-TR:

Glutathione S-transferase

GSSG:

Oxidized glutathione

HO-1:

Heme oxygenase 1

HPA:

Hypothalamic–pituitary–adrenal axis

HVA:

Homovanillic acid

IGF-1:

Insulin-like growth factor 1

L-DOPA:

l-Dihydroxyphenylalanine

LTP:

Long-term potentiation

MAO:

Monoamine oxidase

NE:

Norepinephrine

NO:

Nitric oxide

NOS:

Nitric oxide synthase

NOX:

NAD(P)H oxidases

NPAS2:

Neuronal PAS domain protein 2

PD:

Parkinson’s disease

Per:

Period

PKA:

Protein kinase A

RONS:

Reactive oxygen and nitrogen species

SAM:

S-adenosylhomocysteine

SN:

Substantia nigra

SOR:

Superoxide

SOD:

Superoxide dismutase

SCN:

Suprachiasmatic nuclei

SUR:

Sulfonylurea receptors

TN:

Tyrosine hydroxylase

VMAT2:

Vesicular monoamine transporter 2

References

  1. Rollo CD (1994) Phenotypes: their epigenetics, ecology and evolution. Chapman and Hall, London, pp 1–463

    Google Scholar 

  2. Finch CE (1990) Longevity, senescence and the genome. University of Chicago Press, Chicago, pp 1–922

    Google Scholar 

  3. Knoll J (1988) The striatal dopamine dependency of life span in male rats. Longevity study with (−)deprenyl. Mech Ageing Dev 46:237–262

    Article  CAS  Google Scholar 

  4. Cardozo-Pelaez F, Brooks PJ, Stedeford T et al (2000) DNA damage, repair, and antioxidant systems in brain regions: a correlative study. Free Radical Biol Med 28:779–785

    Article  CAS  Google Scholar 

  5. Reeves S, Bench C, Howard R (2002) Ageing and the nigrostiatal dopaminergic system. Int J Geriatr Psychiatry 17:359–370

    Article  CAS  Google Scholar 

  6. Evans MD, Dizdaroglu M, Cooke MS (2004) Oxidative DNA damage and disease: induction, repair and significance. Mut Res 567:1–61

    CAS  Google Scholar 

  7. Thomas B, Beal MF (2007) Parkinson’s disease. Human Mol. Genet 16:R183–R194

    Article  CAS  Google Scholar 

  8. Halliwell B (2006) Proteasomal dysfunction: a common feature of neurodegenerative diseases? Implications for the environmental origins of neurodegeneration. Antioxid Redox Signal 8:2007–2019

    Article  PubMed  CAS  Google Scholar 

  9. Luo Y, Roth GS (2000) The roles of dopamine oxidative stress and dopamine receptor signaling in aging and age-related neurodegeneration. Antiox Redox Signal 2:449–460

    Article  CAS  Google Scholar 

  10. Greene JG, Dingledine R, Greenamyre JT (2005) Gene expression profiling of rat midbrain dopamine neurons: implications for selective vulnerability in parkinsonism. Neurobiol Dis 18:19–31

    Article  PubMed  CAS  Google Scholar 

  11. Schipper HM, Liberman A, Stopa EG (1998) Neural heme oxygenase-1 expression in idiopathic Parkinson’s disease. Exp Neurol 150:60–68

    Article  PubMed  CAS  Google Scholar 

  12. Gao HM, Liu B, Hong JS (2003) Critical role for microglial NADPH oxidase in rotenone-induced degeneration of dopaminergic neurons. J Neurosci 23:6181–6187

    PubMed  CAS  Google Scholar 

  13. Borges CR, Geddes T, Watson JT et al (2002) Dopamine biosynthesis is regulated by S-glutathionylation: potential mechanism of tyrosine hydroxylase inhibition during oxidative stress. J Biol Chem 277:48295–48302

    Article  PubMed  CAS  Google Scholar 

  14. Neckameyer WS, Woodrome S, Holt B et al (2000) Dopamine and senescence in Drosophila melanogaster. Neurobiol Aging 21:145–152

    Article  PubMed  CAS  Google Scholar 

  15. De La Cruz CP, Revilla E, Venero JL et al (1996) Oxidative inactivation of tyrosine hydroxylase in substantia nigra of aged rat. Free Radical Biol Med 20:53–61

    Article  Google Scholar 

  16. Goudsmit E, Feenstra MGP, Swaab DF (1990) Central monoamine metabolism in the male brown-Norway rat in relation to aging and testosterone. Brain Res Bull 25:755–763

    Article  PubMed  CAS  Google Scholar 

  17. Cruz-Muros I, Afonso-Oramas D, Abreu P et al (2007) Aging of the rat mesostriatal system: Differences between the nigrostriatal and the mesolimbic compartments. Exp Neurol 204:147–161

    Article  PubMed  CAS  Google Scholar 

  18. Morgan DG, May PC, Finch CE (1987) Dopamine and serotonin systems in human and rodent brain: effects of age and neurodegenerative disease. J Am Geriatr Soc 35:334–345

    PubMed  CAS  Google Scholar 

  19. McGeer PL, McGeer EG, Suzuki JS (1977) Aging and extrapyramidal function. Arch Neurol 34:33–35

    PubMed  CAS  Google Scholar 

  20. Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114:2283–2301

    Article  PubMed  Google Scholar 

  21. Ma SY, Roytt M, Collan Y et al (1999) Unbiased morphometrical measurements show loss of pigmented nigral neurones with ageing. Neuropathol Appl Neurobiol 25:394–399

    Article  PubMed  CAS  Google Scholar 

  22. Stark AK, Pakkenberg B (2004) Histological changes of the dopaminergic nigrostriatal system in aging. Cell Tissue Res 318:81–92

    Article  PubMed  CAS  Google Scholar 

  23. Backman L, Nyberg L, Lindenberger U et al (2006) The correlative triad among aging, dopamine, and cognition: Current status and future prospects. Neurosci Biobehav Rev 30:791–807

    Article  PubMed  CAS  Google Scholar 

  24. Beach TG, Sue LI, Walker DG et al (2007) Marked microglial reaction in normal aging human substantia nigra: correlation with extraneuronal neuromelanin pigment deposits. Acta Neuropathol 114:419–424

    Article  PubMed  Google Scholar 

  25. Backman L, Farbe L (2004) The role of dopamine systems in cognitive aging. In: Cabeza R, Nyberg L, Park D (eds) Cognitive neuroscience of aging: linking cognitive and cerebral aging. Oxford University Press, New York, pp 58–84

    Google Scholar 

  26. Wu DC, Teismann P, Tieu K et al (2003) NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine model of Parkinson’s disease. PNAS 100:6145–6150

    Article  PubMed  CAS  Google Scholar 

  27. Ross GW, Petrovitch H, Abbott RD et al (2004) Parkinsonian signs and substantia nigra neuron density in decendents elders without PD. Ann Neurol 56:532–539

    Article  PubMed  Google Scholar 

  28. Rudow G, O’Brien R, Savonenko AV et al (2008) Morphometry of the human substantia nigra in ageing and Parkinson’s disease. Acta Neuropathol (Online). doi:10.1007/s00401-008-0352-8

  29. Cabello CR, Thune JJ, Pakkenberg H et al (2002) Ageing of substantia nigra in humans: cell loss may be compensated by hypertrophy. Neuropathol Appl Neurobiol 28:283–291

    Article  PubMed  CAS  Google Scholar 

  30. Kubis N, Faucheux BA, Ransmayr G et al (2000) Preservation of midbrain catecholaminergic neurons in very old human subjects. Brain 123:366–373

    Article  PubMed  Google Scholar 

  31. Wolf ME, LeWitt PA, Bannon MJ et al (1991) Effect of aging on tyrosine hydroxylase protein content and the relative number of dopamine nerve terminals in human caudate. J Neurochem 56:1191–1200

    Article  PubMed  CAS  Google Scholar 

  32. Eidelberg D, Takikawa S, Dhawan V et al (1993) Striatal 18F-dopa uptake: absence of an aging effect. J Cereb Blood Flow Metab 13:881–888

    PubMed  CAS  Google Scholar 

  33. Rapp PR, Gallagher M (1996) Preserved neuron number in the hippocampus of aged rats with spatial learning deficits. PNAS 93:9926–9930

    Article  PubMed  CAS  Google Scholar 

  34. Rapp PR, Deroche PS, Mao Y et al (2002) Neuron number in the parahippocampal region is preserved in aged rats with spatial learning deficits. Cerebral Cortex 12:1171–1179

    Article  PubMed  Google Scholar 

  35. Keuker JIH, Luiten PGM, Fuchs E (2003) Preservation of hippocampal neuron numbers in aged rhesus monkeys. Neurobiol Aging 24:157–165

    Article  PubMed  Google Scholar 

  36. McCormack AL, Di Monte DA, Delfani K et al (2004) Aging of the nigrostriatal system in the squirrel monkey. J Comp Neurol 471:387–395

    Article  PubMed  Google Scholar 

  37. Dickstein DL, Kabaso D, Rocher AB et al (2007) Changes in the structural complexity of the aged brain. Aging Cell 6:275–284

    Article  PubMed  CAS  Google Scholar 

  38. Toescu EC, Verkhratsky A (2007) The importance of being subtle: small changes in calcium homeostasis control cognitive decline in normal aging. Aging Cell 6:267–273

    Article  PubMed  CAS  Google Scholar 

  39. Peters A, Rosene DL, Moss MB et al (1996) Neurobiological bases of age-related cognitive decline in the rhesus monkey. J Neuropathol Exp Neurol 55:861–874

    PubMed  CAS  Google Scholar 

  40. Pakkenberg H, Anderson BB, Burns RS et al (1995) A stereological study of substantia nigra in young and old rhesus monkeys. Brain Res 693:201–206

    Article  PubMed  CAS  Google Scholar 

  41. Javoy-Agid F, Hirsch EC, Dumas S et al (1990) Decreased tyrosine hydroxylase messenger RNA in the surviving dopamine neurons of the substantia nigra in Parkinson’s disease: an in situ hybridization study. Neuroscience 38:245–253

    Article  CAS  Google Scholar 

  42. Kastner A, Hirsch EC, Agid Y et al (1993) Tyrosine hydroxylase protein and messenger RNA in the dopaminergic nigral neurons of patients with Parkinson’s disease. Brain Res 606:341–345

    Article  PubMed  CAS  Google Scholar 

  43. Anglade P, Vyas S, Hirsch EC et al (1997) Apoptosis in dopaminergic neurons of the human substantia nigra during normal aging. Histol Histopathol 12:603–610

    PubMed  CAS  Google Scholar 

  44. Tompkins MM, Basgall EJ, Zamrini E et al (1997) Apoptotic-like changes in Lewy-body-associated disorders and normal aging in substantia nigral neurons. Am J Pathol 150:119–131

    PubMed  CAS  Google Scholar 

  45. Watanabe H (1987) Differential decrease in the rate of dopamine synthesis in several dopaminergic neurons of aged rat brain. Exp Gerontol 22:17–25

    Article  PubMed  CAS  Google Scholar 

  46. Kish SJ, Shannak K, Rajput A et al (1992) Aging produces a specific pattern of striatal dopamine loss: implications for the etiology of idiopathic Parkinson’s disease. J Neurochem 58:642–648

    Article  PubMed  CAS  Google Scholar 

  47. Thannickal TC, Lai YY, Siegel JM (2008) Hypocretin (orexin) and melanin concentrating hormone loss and the symptoms of Parkinson’s disease. Brain 131:e87 (Online). doi:10.1093/brain/awm221

  48. Haycock JW, Becker L, Ang L et al (2003) Marked disparity between age-related changes in dopamine and other presynaptic dopaminergic markers in human striatum. J Neurochem 87:574–585

    Article  PubMed  CAS  Google Scholar 

  49. Gerhardt GA, Cass WA, Yi A et al (2002) Changes in somatodendritic but not terminal dopamine regulation in aged rhesus monkeys. J Neurochem 80:168–177

    Article  PubMed  CAS  Google Scholar 

  50. Bannon MJ, Poosch MS, Xia Y et al (1992) Dopamine transporter mRNA content in human substantia nigra decreases precipitously with age. PNAS 89:7095–7099

    Article  PubMed  CAS  Google Scholar 

  51. Kish SJ, Zhong XH, Hornykiewicz O et al (1995) Striatal 3,4-dihydroxyphenylalanine decarboxylase in aging: disparity between postmortem and positron emission tomography studies? Ann Neurol 38:260–264

    Article  PubMed  CAS  Google Scholar 

  52. Bohnen NI, Albin RL, Koeppe RA et al (2006) Positron emission tomography of monoaminergic vesicular binding in aging and Parkinson disease. J Cerebral Blood Flow Metab 26:1198–1212

    CAS  Google Scholar 

  53. Bannon MJ, Whitty CJ (1997) Age-related and regional differences in dopamine transporter mRNA expression in human midbrain. Neurology 48:969–977

    PubMed  CAS  Google Scholar 

  54. Volkow ND, Gur RC, Wang GJ et al (1998) Association between decline in brain dopamine activity with age and cognitive and motor impairment in healthy individuals. Am J Psychiatry 155:344–349

    PubMed  CAS  Google Scholar 

  55. van Dyck CH, Seibyl JP, Malison RT et al (1995) Age-related decline in striatal dopamine transporter binding with iodine-123-ß-CITSPECT. J Nuclear Med 36:1175–1181

    Google Scholar 

  56. van Dyck CH, Seibyl JP, Malison RT (2002) Age related decline in dopamine transporters: Analysis of striatal subregions, nonlinear effects, and hemispheric asymmetries. Am J Geriatr Psychiatry 10:36–43

    Google Scholar 

  57. Erixon-Lindroth N, Farde L, Wahlin TBR et al (2005) The role of the striatal dopamine transporter in cognitive aging. Psychiatry Res Neuroimag 138:1–12

    Article  CAS  Google Scholar 

  58. Castner SA, Goldman-Rakic PS (2004) Enhancement of working memory in aged monkeys by a sensitizing regimen of dopamine D1 receptor stimulation. J Neurosci 24:1446–1450

    Article  PubMed  CAS  Google Scholar 

  59. Volkow ND, Logan J, Fowler JS et al (2000) Association between age-related decline in brain dopamine activity and impairment in frontal and cingulate metabolism. Am J Psychiatry 157:75–80

    Article  PubMed  CAS  Google Scholar 

  60. Rollo CD (2007) Speculations on the evolutionary ecology of Homo sapiens with special reference to body size, allometry and survivorship. In: Samaras T (ed) Human body size and the laws of scaling. Nova Biomedical Publishers, New York, pp 261–299

    Google Scholar 

  61. Vallender EJ, Lahn BT (2004) Positive selection on the human genome. Hum Mol Genet 13:R245–R254

    Article  PubMed  CAS  Google Scholar 

  62. Preuss TM, Caceres M, Oldham MC et al (2004) Human brain evolution: insights from microarrays. Nat Rev Genet 5:850–860

    Article  PubMed  CAS  Google Scholar 

  63. Williams GC (1957) Pleiotropy, natural selection, and the evolution of senescence. Evolution 11:398–411

    Article  Google Scholar 

  64. Rollo CD (2002) Growth negatively impacts the life span of mammals. Evol Dev 4:55–61

    Article  Google Scholar 

  65. Rollo CD (2007) Overview of research on giant transgenic mice with emphasis on the brain and aging. In: Samaras T (ed) Human body size and the laws of scaling. Nova Biomedical Publishers, New York, pp 235–260

    Google Scholar 

  66. Vermeulen CJ, Loeschcke V (2007) Longevity and the stress response in Drosophila. Exp Gerontol 42:153–159

    Article  PubMed  CAS  Google Scholar 

  67. Allain H, Bentue-Ferrer D, Akwa Y (2008) Disease-modifying drugs and Parkinson’s disease. Prog Neurobiol 84:25–39

    Article  PubMed  CAS  Google Scholar 

  68. Cotzias GC, Miller ST, Nicholson AR (1974) Prolongation of the life-span in mice adapted to large doses of L-DOPA. PNAS 71:2466–2469

    Article  PubMed  CAS  Google Scholar 

  69. Cotzias GC, Miller ST, Tang LC et al (1977) Levodopa, fertility, and longevity. Science 196:549–551

    Article  PubMed  CAS  Google Scholar 

  70. Chihara K, Kashio Y, Kita T et al (1986) L-DOPA stimulates release of hypothalamic growth hormone-releasing hormone in humans. J Clin Endocrinol Metab 62:466–473

    Article  PubMed  CAS  Google Scholar 

  71. De la Cruz CP, Revilla E, Rodríguez-Gomez JA et al (1997) (−)-Deprenyl treatment restores serum insulin-like growth factor-I (IGF-I) levels in aged rats to young rat level. Eur J Pharmacol 327:215–220

    Article  PubMed  Google Scholar 

  72. Herenu CB, Cristina C, Rimoldi OJ et al (2007) Restorative effect of insulin-like growth factor-I gene therapy in the hypothalamus of senile rats with dopaminergic dysfunction. Gene Therapy 14:237–245

    Article  PubMed  CAS  Google Scholar 

  73. Diaz-Torga G, Feierstein C, Libertun C et al (2002) Disruption of the D2 dopamine receptor alters GH and IGF-I secretion and causes dwarfism in male mice. Endocrinoloy 143:1270–1279

    Article  CAS  Google Scholar 

  74. De Luca M, Rose G, Bonafe M et al (2001) Sex-specific longevity associations defined by tyrosine hydroxylase–insulin–insulin growth factor 2 haplotypes on the 11p15.5 chromosomal region. Exp Gerontol 36:1663–1671

    Article  PubMed  Google Scholar 

  75. Kitani K, Kanai S, Carrillo MC et al (1994) (−)Deprenyl increases the life span as well as activities of superoxide dismutase and catalase but not of glutathione peroxidase in selective brain regions in Fischer rats. Ann NY Acad Sci 717:60–71

    Article  PubMed  CAS  Google Scholar 

  76. Carter CS, Sonntag WE, Onder G et al (2002) Physical performance and longevity in aged rats. J Gerontol Ser A: Biol Sci Med Sci 57:B193–B197

    Google Scholar 

  77. Joseph JA, Bartus RT, Clody D et al (1983) Psychomotor performance in the senescent rodent: reduction of deficits via striatal dopamine receptor up-regulation. Neurobiol Aging 4:313–319

    Article  PubMed  CAS  Google Scholar 

  78. Vermeulen CJ, Cremers T, Westerink BHC et al (2006) Changes in dopamine levels and locomotor activity in response to selection on virgin lifespan in Drosophila melanogaster. Mech Ageing Dev 127:610–617

    Article  CAS  Google Scholar 

  79. De Luca M, Roshina NV, Geiger-Thornsberry GL et al (2003) Dopa decarboxylase (Ddc) affects variation in Drosophila longevity. Nat Genet 34:429–433

    Article  PubMed  Google Scholar 

  80. Hendricks JC, Lu S, Kume K (2003) Gender dimorphism in the role of cycle (BMAL1) in rest, rest regulation, and longevity in Drosophila melanogaster. J Biol Rhythms 18:12–25

    Article  PubMed  CAS  Google Scholar 

  81. Bradley AJ, McDonald IR, Lee AK (1980) Stress and mortality in a small marsupial (Antechinus stuartii, Macleary). Gen Comp Endocrinol 40:188–200

    Article  PubMed  CAS  Google Scholar 

  82. Naylor E, Bergmann BM, Krauski K et al (2000) The circadian Clock mutation alters sleep Homeostasis in the Mouse. J Neurosci 20:8138–8143

    PubMed  CAS  Google Scholar 

  83. Meites J (1995) Neuroendocrine control of reproduction in aging rats and humans. In: Sarkar DK, Barnes CD (eds) The reproductive endocrinology of aging and drug abuse. CRC Press, Boca Raton, pp 109–168

    Google Scholar 

  84. Forman LJ, Sonntag WE, Miki N et al (1980) Maintenance by L-DOPA treatment of estrous cycles and LH response to estrogen in aging female rats. Exp Aging Res 6:547–554

    Article  PubMed  CAS  Google Scholar 

  85. Yin W, Gore AC (2006) Neuroendocrine control of reproductive aging: roles of GnRH neurons. Reproduction 131:403–414

    Article  PubMed  CAS  Google Scholar 

  86. Simpkins JW, Mueller GP, Huang HH et al (1977) Evidence for depressed catecholamine and enhanced serotonin metabolism in aging male rats: possible relation to gondotropin secretion. Endocrinol 100:1672–1678

    Article  CAS  Google Scholar 

  87. Prasad SK, Qureshi TN, Saxena S et al (2007) L-Dopa feeding induces body growth and reproductive conditions in Japanese quail, Coturnix coturnix Japonica. Int J Poultry Sci 6:560–566

    Article  Google Scholar 

  88. Tsai HW, Shui HA, Liu HS et al (2006) Monoamine levels in the nucleus accumbens correlate with male sexual behavior in middle-aged rats. Pharmacol Biochem Behav 83:265–270

    Article  PubMed  CAS  Google Scholar 

  89. Hussain T, Lokhandwala MF (1998) Renal dopamine receptor function in hypertension. Hypertension 32:187–197

    PubMed  CAS  Google Scholar 

  90. Zeng C, Yang Z, Wang Z et al (2005) Interaction of angiotensin II type 1 and D5 dopamine receptors in renal proximal tubule cells. Hypertension 45:804–810

    Article  PubMed  CAS  Google Scholar 

  91. Banday AA, Lokhandwala MF (2007) Oxidative stress reduces renal dopamine D1 receptor-Gq/11α G protein-phospholipase C signaling involving G protein-coupled receptor kinase 2. Am J Physiol Renal Physiol 293:F306–F315

    Article  PubMed  CAS  Google Scholar 

  92. Steiner B, Winter C, Hosman K et al (2006) Enriched environment induces cellular plasticity in the adult substantia nigra and improves motor behavior function in the 6-OHDA rat model of Parkinson’s disease. Exp Neurol 199:291–300

    Article  PubMed  Google Scholar 

  93. Lemon JA, Boreham DR, Rollo CD (2003) A dietary supplement abolishes age-related cognitive decline in transgenic mice expressing elevated free radical processes. Exp Biol Med 228:800–810

    CAS  Google Scholar 

  94. O’Rourke B, Cortassa S, Aon MA (2005) Mitochondrial ion channels: gatekeeprs of life and death. Physiology 20:303–315

    Article  PubMed  CAS  Google Scholar 

  95. Gibson GE, Peterson C (1987) Calcium and the aging nervous system. Neurobiol Aging 8:329–343

    Article  PubMed  CAS  Google Scholar 

  96. Mattson MP (2007) Calcium and neurodegeneration. Aging Cell 6:337–350

    Article  PubMed  CAS  Google Scholar 

  97. Thibault O, Gant JC, Landfield PW (2007) Expansion of the calcium hypothesis of brain aging and Alzheimer’s disease: minding the store. Aging Cell 6:307–317

    Article  PubMed  CAS  Google Scholar 

  98. Squier TC (2001) Oxidative stress and protein aggregation during biological aging. Exp Gerontol 36:539–1550

    Article  Google Scholar 

  99. Beal MF (1998) Excitotoxicity and nitric oxide in Parkinson’s disease pathogenesis. Ann Neurol 44(Suppl 1):S110–S114

    PubMed  CAS  Google Scholar 

  100. Tang TS, Slow E, Lupu V et al (2005) Disturbed Ca2+ signaling and apoptosis of medium spiny neurons in Huntington’s disease. PNAS 102:2602–2607

    Article  PubMed  CAS  Google Scholar 

  101. Yan Y, Wei CL, Zhang WR et al (2006) Cross-talk between calcium and reactive oxygen species signaling. Acta Pharmacol Sinica 27:821–826

    Article  CAS  Google Scholar 

  102. Kourie JI (1998) Interaction of reactive oxygen species with ion transport mechanisms. Am J Physiol Cell Physiol 275:C1–C24

    CAS  Google Scholar 

  103. Rollo CD (2007) Multidisciplinary aspects of regulatory systems relevant to multiple stressors: aging, xenobiotics and radiation. In: Mothersill C, Mosse I, Seymour C (eds) Multiple stressors: a challenge for the future. Springer, Dordrecht, pp 185–224

    Chapter  Google Scholar 

  104. Koliwad SK, Elliott SJ, Kunze DL (1996) Oxidized glutathione mediates cation channel activation in calf vascular endothelial cells during oxidant stress. J Physiol 495:37–49

    PubMed  CAS  Google Scholar 

  105. Wang JW, Humphreys JM, Phillips JP et al (2000) A novel leg-shaking Drosophila mutant defective in a voltage-gated K+ current and hypersensitive to reactive oxygen species. J Neurosci 20:65958–65964

    Google Scholar 

  106. Matalon S, Hardiman KM, Jain L et al (2003) Regulation of ion channel structure and function by reactive oxygen–nitrogen species. Am J Physiol Lung Cell Mol Physiol 285:L1184–L1189

    PubMed  CAS  Google Scholar 

  107. Avshalumov MV, Chen BT, Marshall SP et al (2003) Glutamate-dependent inhibition of dopamine release in striatum is mediated by a new diffusible messenger, H2O2. J Neurosci 23:2744–2750

    PubMed  CAS  Google Scholar 

  108. Pletjushkina OY, Fetisova EK, Lyamzaev KG et al (2005) Long-distance apoptotic killing of cells is mediated by hydrogen peroxide in a mitochondrial ROS-dependent fashion. Cell Death Differ 12:1442–1444

    Article  CAS  Google Scholar 

  109. Ichinari K, Kakei M, Matsuoka T et al (1996) Direct activation of the ATP-sensitive potassium channel by oxygen free radicals in guinea-pig ventricular cells: its potentiation by MgADP. J Mol Cell Cardiol 28:1867–1877

    Article  PubMed  CAS  Google Scholar 

  110. Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78:547–581

    PubMed  CAS  Google Scholar 

  111. Liu J (2008) The effects and mechanisms of mitochondrial nutrient α-lipoic acid on improving age-associated mitochondrial and cognitive dysfunction: an overview. Neurochem Res 33:194–203

    Article  PubMed  CAS  Google Scholar 

  112. Lutz PL, Prentice HM, Milton SL (2003) Is turtle longevity linked to enhanced mechanisms for surviving brain anoxia and reoxygenation? Exp Gerontol 38:797–800

    Article  PubMed  CAS  Google Scholar 

  113. McCartney CE, McClafferty H, Huibant JM et al (2005) A cysteine-rich motif confers hypoxia sensitivity to mammalian large conductance voltage- and Ca-activated K (BK) channel α -subunits. PNAS 102:17870–17876

    Article  PubMed  CAS  Google Scholar 

  114. Brown MF, Gratton TP, Stuart JA (2007) Metabolic rate does not scale with body mass in cultured mammalian cells. Am J Physiol Regul Integr Comp Physiol 292:R2115–R2121

    PubMed  CAS  Google Scholar 

  115. Disterhoft JF, Oh MM (2007) Alterations in intrinsic neuronal excitability during normal aging. Aging Cell 6:327–336

    Article  PubMed  CAS  Google Scholar 

  116. Thibault O, Landfield PW (1996) Increase in single L-type calcium channels in hippocampal neurons during aging. Science 272:1017–1020

    Article  PubMed  CAS  Google Scholar 

  117. Yamada T, McGeer PL, Baimbridge KG et al (1990) Relative sparing in Parkinson’s disease of substantia nigra dopamine neurons containing calbindin-D28K. Brain Res 526:303–307

    Article  PubMed  CAS  Google Scholar 

  118. Kamsler A, Segal M (2003) Hydrogen peroxide modulation of synaptic plasticity. J Neurosci 23:269–276

    PubMed  CAS  Google Scholar 

  119. Davare MA, Hell JW (2003) Increased phosphorylation of the neuronal L-type Ca2+ channel Cav1.2 during aging. PNAS 100:16018–16023

    Article  PubMed  CAS  Google Scholar 

  120. Batuecas A, Pereira R, Centeno C et al (1998) Effects of chronic nimodipine on working memory of old rats in relation to defects in synaptosomal calcium homeostasis. Eur J Pharmacol 350:141–150

    Article  PubMed  CAS  Google Scholar 

  121. Norris CM, Halpain S, Foster TC (1998) Reversal of age-related alterations in synaptic plasticity by blockade of L-Type Ca2+ channels. J Neurosci 18:3171–3179

    PubMed  CAS  Google Scholar 

  122. Tzounopoulos T, Stackman R (2003) Enhancing synaptic plasticity and memory: a role for small-conductance Ca2+-activated K+ channles. Neuroscientist 9:434–439

    Article  PubMed  CAS  Google Scholar 

  123. Gant JC, Sama MM, Landfield PW et al (2006) Early and simultaneous emergence of multiple hippocampal biomarkers of aging is mediated by Ca2+-induced Ca2+ release. J Neurosci 26:3482–3490

    Article  PubMed  CAS  Google Scholar 

  124. Murphy GG, Fedorov NB, Giese KP et al (2004) Increased neuronal excitability, synaptic plasticity, and learning in aged Kvβ1.1 knockout mice. Curr Biol 14:1907–1915

    Article  PubMed  CAS  Google Scholar 

  125. Horiuchi J, Saitoe M (2005) Can flies shed light on our own age-related memory impairment? Ageing Res Rev 4:83–101

    Article  PubMed  Google Scholar 

  126. Blalock EM, Chen KC, Sharrow K et al (2003) Gene microarrays in hippocampal aging: statistical profiling identifies novel processes correlated with cognitive impairment. J Neurosci 23:3807–3819

    PubMed  CAS  Google Scholar 

  127. Deyo RA, Straube KT, Disterhoft JF (1989) Nimodipine facilitates associative learning in aging rabbits. Science 243:809–811

    Article  PubMed  CAS  Google Scholar 

  128. Markel E, Felszeghy K, Luiten PGM et al (1995) Beneficial effect of chronic nimodipine treatment on behavioral dysfunctions of aged rats exposed to perinatal ethanol treatment. Arch Gerontol Geriatr 21:75–88

    Article  PubMed  CAS  Google Scholar 

  129. Chapman PF (2005) Cognitive aging: recapturing the excitation of youth? Curr Biol 15:R31–R33

    Article  PubMed  CAS  Google Scholar 

  130. De Jong GI, Nyakas C, Scuurman T et al (1993) Aging-related alterations in behavioral activation and cerebrovascular integrity in rats are dose-dependently influenced by nimodipine. Neurosci Res Comm 12:1–8

    Google Scholar 

  131. Belforte JE, Magarinos-Azcone C, Armando I et al (2001) Pharmacological involvement of the calcium blocker flunarizine in dopamine transmission at the striatum. Parkinsonism Related Disord 8:33–40

    Article  CAS  Google Scholar 

  132. Verkhratsky A (2005) Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol Rev 85:201–279

    Article  PubMed  CAS  Google Scholar 

  133. Huddleston AT, Tang W, Takeshima H et al (2008) Superoxide-induced potentiation in the hippocampus requires activation of ryanodine receptor type 3 and ERK. J Neurophysiol 99:1565–1571

    Article  PubMed  CAS  Google Scholar 

  134. Hidalgo C, Carrasco MA, Munoz P et al (2007) A role for reactive oxygen/nitrogen species and iron on neuronal synaptic plasticity. Antioxid Redox Signal 9:245–255

    Article  PubMed  CAS  Google Scholar 

  135. Hammond RS, Bond CT, Strassmaier T et al (2006) Small-conductance Ca2+-activated K+ channel type 2 (SK2) modulates hippocampal learning, memory. and synaptic plasticity J Neurosci 26:1844–1853

    CAS  Google Scholar 

  136. Blank T, Nijholt I, Kye MJ et al (2003) Small-conductance, Ca2+-activated K+ channel SK3 generates age-related memory and LTP deficits. Nat Neurosci 6:911–912

    Article  PubMed  CAS  Google Scholar 

  137. Stackman RW, Hammond RS, Linardatos E et al (2002) Small conductance Ca2+-activated K+ channels modulate synaptic plasticity and memory encoding. J Neurosci 22:10163–10171

    PubMed  CAS  Google Scholar 

  138. Brennan AR, Dolinsky B, Vu MAT et al (2008) Blockade of IP3-mediated SK channel signaling in the rat medial prefrontal cortex improves spatial working memory. Learn Mem 15:93–96

    Article  Google Scholar 

  139. Oh SW, Mukhopadhyay A, Dixit BL et al (2006) Identification of direct DAF-16 targets controlling longevity, metabolism and diapause by chromatin immunoprecipitation. Nat Genet 38:251–257

    Article  PubMed  CAS  Google Scholar 

  140. Lim D, Fedrizzi L, Tartari M et al (2008) Calcium homeostasis and mitochondrial dysfunction in striatal neurons of Huntington disease. J Biol Chem 283:5780–5789

    Article  PubMed  CAS  Google Scholar 

  141. Ghelardini C, Quattrone A, Galeotti N et al (2003) Antisense knockdown of the Shaker-like Kv1.1 gene abolishes the central stimulatory effects of amphetamines in mice and rats. Neuropsychopharmacology 28:1096–1105

    CAS  Google Scholar 

  142. Raimondi L, Alfarano C, Pacini A et al (2007) Methylamine-dependent release of nitric oxide and dopamine in the CNS modulates food intake in fasting rats. Brit J Pharmacol 150:1003–1010

    Article  CAS  Google Scholar 

  143. Lawson K (2000) Is there a role for potassium channel openers in neuronal ion channel disorders? Expert Opin Invest Drugs 9:2269–2280

    Article  CAS  Google Scholar 

  144. Vincent A, Buckley C, Schott JM et al (2004) Potassium channel antibody-associated encephalopathy: a potentially immunotherapy-responsive form of limbic encephalitis. Brain 127:701–712

    Article  PubMed  Google Scholar 

  145. Michel PP, Alvarez-Fischer D, Guerreiro S et al (2007) Role of activity-dependent mechanisms in the control of dopaminergic neuron survival. J Neurochem 101:289–297

    Article  PubMed  CAS  Google Scholar 

  146. Liss B, Haeckel O, Wildmann J et al (2005) K-ATP channels promote the differential degeneration of dopaminergic midbrain neurons. Nat Neurosci 8:1742–1751

    Article  PubMed  CAS  Google Scholar 

  147. Liss B, Roeper J (2001) Molecular physiology of neuronal K-ATP channels (review). Mol Membr Biol 18:117–127

    Article  PubMed  CAS  Google Scholar 

  148. Avshalumov MV, Chen BT, Koos T et al (2005) Endogeneous hydrogen peroxide regulates the excitability of midbrain dopamine neurons via ATP-sensitive potassium channels. J Neurosci 25:4222–4231

    Article  PubMed  CAS  Google Scholar 

  149. Chen BT, Avshalumov MV, Rice ME (2001) H2O2 is a novel endogenous modulator of synaptic dopamine release. J Neurophysiol 85:2468–2476

    PubMed  CAS  Google Scholar 

  150. Chen BT, Avshalumov MV, Rice ME (2002) Modulation of somatodendritic dopamine release by endogenous H2O2: susceptibility in substantia nigra but resistance in VTA. J Neurophysiol 87:1155–1158

    PubMed  CAS  Google Scholar 

  151. Bao L, Avshalumov MV, Rice ME (2005) Partial mitochondrial inhibition causes striatal dopamine release suppression and medium spiny neuron depolarization via H2O2 elevation, not ATP depletion. J Neurosci 25:10029–10040

    Article  PubMed  CAS  Google Scholar 

  152. Rollo CD (2006) Radiation and the regulatory landscape of neo2-Darwinism. Mut Res 597:18–31

    CAS  Google Scholar 

  153. Lamensdorf I, Meiri N, Harvey-White J et al (1999) Kir6.2 oligoantisense administered into the globus pallidus reduces apomorphine-induced turning in 6-OHDA hemiparkinsonian rats. Brain Res 818:275–284

    Article  PubMed  CAS  Google Scholar 

  154. Chan CS, Guzman JN, IIijic E et al (2007) ‘Rejuvenation’ protects neurons in mouse models of Parkinson’s disease. Nature 447:1081–1086

    Article  PubMed  CAS  Google Scholar 

  155. Kuzhikandathil EV, Yu W, Oxford GS (1998) Human dopamine D3 and D2L receptors couple to inward rectifier potassium channels in mammalian cell lines. Mol Cellul Neurosci 12:390–402

    Article  CAS  Google Scholar 

  156. Momiyama T, Koga E (2001) Dopamine D2-like receptors selectively block N-type Ca2+ channels to reduce GABA release onto rat striatal cholinergic interneurons. J Physiol 533:479–492

    Article  PubMed  CAS  Google Scholar 

  157. Huang CL, Huang NK, Shyue SK et al (2003) Hydrogen peroxide induces loss of dopamine transporter activity: a calcium-dependent oxidative mechanism. J Neurochem 86:1247–1259

    PubMed  CAS  Google Scholar 

  158. Sonders MS, Zhu SJ, Zahniser NR et al (1997) Multiple ionic conductances of the human dopamine transporter: the actions of dopamine and psychostimulants. J Neurosci 17:960–974

    PubMed  CAS  Google Scholar 

  159. Berman SB, Zigmond MJ, Hastings TG (1996) Modification of dopamine transporter function: effect of reactive oxygen species and dopamine. J Neurochem 67:593–600

    PubMed  CAS  Google Scholar 

  160. Morel P, Tallineau C, Pontcharraud R et al (1999) Effects of 4-hydroxynonenal, a lipid peroxidation product, on dopamine transport and Na+/K+ ATPase in rat striatal synaptosomes. Neurochem Intern 33:531–540

    Article  Google Scholar 

  161. Salthun-Lassalle B, Hirsch EC, Wolfart J et al (2004) Rescue of mesencephalic dopaminergic neurons in culture by low-level stimulation of voltage-gated sodium channels. J Neurosci 24:5922–5930

    Article  PubMed  CAS  Google Scholar 

  162. Whitehead RE, Ferrer JV, Javitch JA et al (2001) Reaction of oxidized dopamine with endogenous cysteine residues in the human dopamine transporter. J Neurochem 76:1242–1251

    Article  PubMed  CAS  Google Scholar 

  163. Redman PT, Jefferson BS, Ziegler CB et al (2006) A vital role for voltage-dependent potassium channels in dopamine transporter-mediated 6-hydroxydopamine neurotoxicity. Neuroscience 143:1–6

    Article  CAS  Google Scholar 

  164. Remillard CV, Yuan JXY (2004) Activation of K+ channels: an essential pathway in programmed cell death. Am J Physiol Lung Cell Mol Physiol 286:L49–L67

    Article  PubMed  CAS  Google Scholar 

  165. Zhao YM, Sun LN, Zhou HY et al (2006) Voltage-dependent potassium channels are involved in glutamate-induced apoptosis of rat hippocampal neurons. Neurosci Lett 398:22–27

    Article  CAS  Google Scholar 

  166. Bindoli A, Rigobello MP, Deeble DJ (1992) Biochemical and toxicological properties of the oxidation products of catecholamines. Free Radical Biol Med 13:391–405

    Article  CAS  Google Scholar 

  167. Niznik HB, Fogel EF, Fassos FF et al (1991) The dopamine transporter is absent in Parkinsonian putamen and reduced in the caudate nucleus. J Neurochem 56:192–198

    Article  PubMed  CAS  Google Scholar 

  168. Call LM, Morton CM (2002) Continuing to break the sound barrier: genes in hearing. Cur Opin Genet Dev 12:343–348

    Article  CAS  Google Scholar 

  169. Lee JW, Ryoo ZY, Lee EJ et al (2002) Circling mouse, a spontaneous mutant in the inner ear. Exp Anim 51:167–171

    Article  PubMed  CAS  Google Scholar 

  170. Wood JD, Muchinsky SJ, Filoteo AG et al (2004) Low endolymph calcium concentrations in deafwaddler2 J mice suggest that PMCA2 contributes to endolymph calcium maintenance. J Assoc Res Otolaryngol 5:99–110

    PubMed  Google Scholar 

  171. Cirelli C (2005) A molecular window on sleep: changes in gene expression between sleep and wakefulness. Neuroscientist 11:63–74

    Article  PubMed  CAS  Google Scholar 

  172. Kume K, Kume S, Park SK et al (2005) Dopamine is a regulator of arousal in the fruit fly. J Neurosci 25:7377–7384

    Article  PubMed  CAS  Google Scholar 

  173. Espinosa F, Marks G, Heintz N et al (2004) Increased motor drive and sleep loss in mice lacking Kv3-type potassium channels. Genes Brain Behav 3:90–100

    Article  PubMed  CAS  Google Scholar 

  174. Patil N, Cox DR, Bhat D et al (1995) A potassium channel mutation in weaver mice implicates membrane excitability in granuale cell differentiation. Nat Genet 11:126–129

    Article  PubMed  CAS  Google Scholar 

  175. Qiao X, Hefti F, Knusel B et al (1996) Selective failure of brain-derived neurotrophic factor mRNA expression in the cerebellum of Stargazer, a mutant mouse with ataxia. J Neurosci 16:640–648

    PubMed  CAS  Google Scholar 

  176. Gutterman DD (2005) Mitochondria and reactive oxygen species: an evolution in function. Circul Res 97:302–304

    Article  CAS  Google Scholar 

  177. Meng TC, Lou YW, Chen YY et al (2006) Cys-oxidation of protein tyrosine phosphatases: its role in regulation of signal transduction and its involvement in human cancers. J Cancer Mol 2:9–16

    CAS  Google Scholar 

  178. Tang XD, Daggett H, Hanner M et al (2001) Oxidative regulation of large conductance calcium-activated potassium channels. J Gen Physiol 117:253–274

    Article  PubMed  CAS  Google Scholar 

  179. Wei L, Yu SP, Gottron F et al (2003) Potassium channel blockers attenuate hypoxia- and ischemia-induced neuronal death in vitro and in vivo. Stroke 34:1281–1286

    Article  PubMed  CAS  Google Scholar 

  180. Katsuki H, Shibata H, Takenaka C et al (2003) N-methyl-d-aspartate receptors contribute to the maintenance of dopaminergic neurons in rat midbrain slice cultures. Neurosci Lett 341:123–126

    Article  PubMed  CAS  Google Scholar 

  181. Salthun-Lassalle B, Traver S, Hirsch EC et al (2005) Substance P, neurokinins A and B, and synthetic tachykinin peptides protect mesencephalioc dopaminergic neurons in culture via an activity-dependent mechanism. Mol Pharmacol 68:1214–1224

    Article  PubMed  CAS  Google Scholar 

  182. Yang F, Feng L, Zheng F et al (2001) GDNF acutely modulates excitability and A-type K+ channels in midbrain dopaminergic neurons. Nat Neurosci 4:1071–1078

    Article  PubMed  CAS  Google Scholar 

  183. Douhou A, Troadec JD, Ruberg M et al (2001) Survival promotion of mesencephalic dopaminergic neurons by depolarizing concentrations of K+ requires concurrent inactivation of NMDA or AMPA/kainate receptors. J Neurochem 78:163–174

    Article  PubMed  CAS  Google Scholar 

  184. Rossi D, Oshima T, Attwell D (2000) Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 403:316–321

    Article  PubMed  CAS  Google Scholar 

  185. Shahar T, House SB, Gainer H (2004) Neural activity protects hypothalamic magnocellular neurons against axotomy-induced programmed cell death. J Neurosci 24:6553–6562

    Article  PubMed  CAS  Google Scholar 

  186. Grishin A, Ford H, Wang J et al (2005) Attenuation of apoptosis in enterocytes by blockade of potassium channels. Am J Physiol Gastrointest Liver Physiol 289:G815–G821

    Article  PubMed  CAS  Google Scholar 

  187. Andrews ZB, Horvath B, Barnstable CJ et al (2005) Uncoupling protein-2 is critical for nigral dopamine cell survival in a mouse model of Parkinson’s disease. J Neurosci 25:184–191

    Article  PubMed  CAS  Google Scholar 

  188. Yu SP, Yeh CH, Strasser U et al (1999) NMDA Receptor-mediated K+ efflux and neuronal apoptosis. Science 284:336–339

    Article  PubMed  CAS  Google Scholar 

  189. Adachi A, Nogi T, Ebihara S (1998) Phase-relationship and mutual effects between circadian rhythms of ocular melatoni and dopamine in the pigeon. Brain Res 792:361–369

    Article  PubMed  CAS  Google Scholar 

  190. McLaughlin BA, Pal S, Tran MP et al (2001) p38 activation is required upstream of potassium current enhancement and caspase cleavage in thiol oxidant-induced neuronal apoptosis. J Neurosci 21:3303–3311

    PubMed  CAS  Google Scholar 

  191. Redman PT, He K, Hartnett KA et al (2007) Apoptotic surge of potassium currents is mediated by p38 phosphorylation of Kv2.1. PNAS 104:3568–3573

    Article  PubMed  CAS  Google Scholar 

  192. Pal S, Hartnett KA, Nerbonne JM et al (2003) Mediation of neuronal apoptosis by Kv2.1-encoded potassium channels. J Neurosci 23:4798–4802

    PubMed  CAS  Google Scholar 

  193. Bossy-Wetzel E, Talantova MV, Lee W et al (2004) Crosstalk between nitric oxide and zinc pathways to neuronal cell death involving mitochondrial dysfunction and p38-activated K+ channels. Neuron 41:351–365

    Article  PubMed  CAS  Google Scholar 

  194. Aizenman E, Stout AK, Hartnett KA et al (2000) Induction of neuronal apoptosis by thiol oxidation: putative role of intracellular zinc release. J Neurochem 75:1878–1888

    Article  PubMed  CAS  Google Scholar 

  195. Martin-Romero FJ, Santiago-Josefat B, Correa-Bordes J et al (2000) Potassium-induced apoptosis in rat cerebellar granule cells involves cell-cycle blockade at the G1/S transition. J Mol Neurosci 15:155–165

    Article  PubMed  CAS  Google Scholar 

  196. Verdaguer E, Jorda EG, Canudas AM et al (2003) 3-Amino thioacridone, a selective cyclin-dependent kinase 4 inhibitor, attenuates kainic acid-induced apoptosis in neurons. Neuroscience 120:599–603

    Article  CAS  Google Scholar 

  197. Otsuka Y, Tanaka T, Uchida D et al (2004) Roles of cyclin-dependent kinase 4 and p53 in neuronal cell death induced by doxorubicin on cerebellar granule neurons in mouse. Neurosci Lett 365:180–185

    Article  CAS  Google Scholar 

  198. Naetzker S, Hagen N, van Echten-Deckert G (2006) Activation of p38 mitogen-activated protein kinase and partial reactivation of the cell cycle by cis-4-methylsphingosine direct postmitotic neurons towards apoptosis. Genes Cells 11:269–279

    Article  PubMed  CAS  Google Scholar 

  199. Yu SP, Yeh CH, Sensi SL et al (1997) Mediation of neuronal apoptosis by enhancement of outward potassium current. Science 278:114–117

    Article  PubMed  CAS  Google Scholar 

  200. Platoshyn O, Zhang S, McDaniel SS et al (2002) Cytochrome c activates K+ channels before inducing apoptosis. Am J Physiol Cell Physiol 283:C1298–C1305

    PubMed  CAS  Google Scholar 

  201. Ekhterae D, Platoshyn O, Krick S et al (2001) Bcl-2 decreases voltage-gated K+ channel activity and enhances survival in vascular smooth muscle cells. Am J Physiol Cell Physiol 281:C157–C165

    PubMed  CAS  Google Scholar 

  202. Franklin JL, Sanz-Rodriguez C, Juhasz A et al (1995) Chronic depolarization prevents programmed death of sympathetic neurons in vitro but does not support growth: requirement for Ca2+ influx but not Trk activation. J Neurosci 15:643–664

    PubMed  CAS  Google Scholar 

  203. Klatt P, Lamas S (2000) Regulation of protein function by S-glutathiolation in response to oxidative and nitrosative stress. Eur J Biochem 267:4928–4944

    Article  PubMed  CAS  Google Scholar 

  204. Bigelow DJ, Squier TC (2005) Redox modulation of cellular signaling and metabolism through reversible oxidation of methionine sensors in calcium regulatory proteins. Biochim Biophys Acta Prot Proteom 1703:121–134

    Article  CAS  Google Scholar 

  205. Stutzmann GE (2007) The pathogenesis of Alzheimers disease—is it a lifelong “Calciumopathy”? Neuroscientist 13:546–559

    Article  PubMed  CAS  Google Scholar 

  206. Ceriani MF, Hogenesch JB, Yanovsky M et al (2002) Genome-wide expression analysis in Drosophila reveals genes controlling circadian behavior. J Neurosci 22:9305–9319

    PubMed  CAS  Google Scholar 

  207. Harman D (1996) Aging and disease: extending functional life span. Ann NY Acad Sci 786:321–336

    Article  PubMed  CAS  Google Scholar 

  208. Brand MD, Affourtit C, Esteves TC et al (2004) Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radical Biol Med 37:755–767

    Article  CAS  Google Scholar 

  209. Keller JN, Gee J, Ding Q (2002) The proteasome in brain aging. Aging Res Rev 1:279–293

    Article  CAS  Google Scholar 

  210. Keating DJ (2008) Mitochondrial dysfunction, oxidative stress, regulation of exocytosis and their relevance to neurodegenerative diseases. J Neurochem 104:298–305

    PubMed  CAS  Google Scholar 

  211. Avshalumov MV, Rice ME (2002) NMDA receptor activation mediates hydrogen peroxide-induced pathophysiology in rat hippocampal slices. J Neurophysiol 87:2896–2903

    PubMed  CAS  Google Scholar 

  212. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of aging. Nature 408:239–247

    Article  PubMed  CAS  Google Scholar 

  213. Liu H, Colavitti R, Rovira II et al (2005) Redox-dependent transcriptional regulation. Circ Res 97:967–974

    Article  PubMed  CAS  Google Scholar 

  214. Droge W (2002) The plasma redox state and ageing. Ageing Res Rev 1:257–278

    Article  PubMed  Google Scholar 

  215. Droge W (2005) Oxidative aging and insulin receptor signaling. J Gerontol Biol Sci Med Sci 60(A):1378–1385

    Google Scholar 

  216. Klann E, Roberson ED, Knapp LT et al (1998) A role for superoxide in protein kinase C activation and induction of long-term potentiation. J Biol Chem 273:4516–4522

    Article  PubMed  CAS  Google Scholar 

  217. Hu D, Serrano F, Oury TD et al (2006) Aging-dependent alterations in synaptic plasticity and memory in mice that overexpress extracellular superoxide dismutase. J Neurosci 26:3933–3941

    Article  PubMed  CAS  Google Scholar 

  218. Finkel T (2003) Oxidant signals and oxidative stress. Curr Opin Cell Biol 15:247–254

    Article  PubMed  CAS  Google Scholar 

  219. Menon SG, Goswami PC (2007) A redox cycle within the cell cycle: ring in the old with the new. Oncogene 26:1101–1109

    Article  PubMed  CAS  Google Scholar 

  220. Rutter J, Reick M, Wu LC et al (2001) Regulation of Clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293:510–514

    Article  PubMed  CAS  Google Scholar 

  221. Droge W, Schipper HM (2007) Oxidative stress and aberrant signaling in aging and cognitive decline. Aging Cell 6:361–370

    Article  PubMed  CAS  Google Scholar 

  222. Lloyd D, Murray DB (2007) Redox rhythmicity: clocks at the core of temporal coherence. Bioessays 29:465–473

    Article  PubMed  CAS  Google Scholar 

  223. Duffield GE, Best JD, Meurers BH et al (2002) Circadian programs of transcriptional activation, signaling and protein turnover revealed by microarray analysis of mammalian cells. Curr Biol 12:551–557

    Article  CAS  Google Scholar 

  224. Serrano F, Klann E (2004) Reactive oxygen species and synaptic plasticity in the aging hippocampus. Ageing Res Rev 3:431–443

    Article  PubMed  CAS  Google Scholar 

  225. Ghezzi P, Bonetto V, Fratelli M (2005) Thiol–disulfide balance: from the concept of oxidative stress to that of redox regulation. Antioxid Redox Signal 7:964–972

    Article  PubMed  CAS  Google Scholar 

  226. Kishida KT, Klann E (2007) Sources and targets of reactive oxygen species in synaptic plasticity and memory. Antioxid Redox Signal 9:233–244

    Article  PubMed  CAS  Google Scholar 

  227. Lachmansingh E, Rollo CD (1994) Evidence for a trade off between growth and behavioural activity in giant “Supermice” genetically engineered with extra growth hormone genes. Can J Zool 72:2158–2168

    Article  Google Scholar 

  228. Rollo CD, Foss J, Lachmansingh E et al (1997) Behavioral rhythmicity in transgenic growth hormone mice: trade-offs, energetics, and sleep-wake cycles. Can J Zool 75:1020–1034

    Article  Google Scholar 

  229. Hajdu I, Obal F Jr, Fang J et al (2002) Sleep of transgenic mice producing excess rat growth hormone. Am J Physiol Regul Integr Comp Physiol 282:R70–R76

    PubMed  CAS  Google Scholar 

  230. Tu BP, Kudlicki A, Rowicka M et al (2005) Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science 310:1152–1158

    Article  PubMed  CAS  Google Scholar 

  231. Tu BP, Mohler RE, Liu JC et al (2007) Cyclic changes in metabolic state during the life of a yeast cell. PNAS 104:16886–16891

    Article  PubMed  CAS  Google Scholar 

  232. Jin X, Shearman LP, Weaver DR et al (1999) A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell 96:57–68

    Article  PubMed  CAS  Google Scholar 

  233. Buijs RM, van Eden CC, Goncharuk VD et al (2003) The biological clock tunes the organs of the body: timing by hormones and the autonomic nervous system. J Endocrinol 177:17–26

    Article  PubMed  CAS  Google Scholar 

  234. Lowrey PL, Takahashi JS (2004) Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Ann Rev Gen Hum Genet 5:407–441

    Article  CAS  Google Scholar 

  235. Dioum EM, Rutter J, Tuckerman JR et al (2002) NPAS2: a gas-responsive transcription factor. Science 298:2385–2387

    Article  PubMed  CAS  Google Scholar 

  236. Doi M, Hirayama J, Sassone-Corsi P (2006) Circadian regulator CLOCK is a histone acetyltransferase. Cell 125:497–508

    Article  PubMed  CAS  Google Scholar 

  237. Claridge-Chang A, Wijinen H, Naef F et al (2001) Circadian regulation of gene expression systems in the Drosophila head. Neuron 32:657–671

    Article  PubMed  CAS  Google Scholar 

  238. Pando MP, Pinchak AB, Cermakian N et al (2001) A cell-based system that recapitulates the dynamic light-dependent regulation of the vertebrate clock. PNAS 98:10178–10183

    Article  PubMed  CAS  Google Scholar 

  239. Hirayama J, Cho S, Sassone-Corsi P (2007) Circadian control by the reduction/oxidation pathway: Catalase represses light-dependent clock gene expression in the zebrafish. PNAS 104:15747–15752

    Article  PubMed  CAS  Google Scholar 

  240. La Fleur SE, Kalsbeek A, Wortel J et al (2001) A daily rhythm in glucose tolerance: a role for the suprachiasmatic nucleus. Diabetes 50:1237–1243

    Article  PubMed  Google Scholar 

  241. Yin L, Wu N, Curtin JC et al (2007) Rev-erbα, a heme sensor that coordinates metabolic and circadian pathways. Science 318:1786–1789

    Article  PubMed  CAS  Google Scholar 

  242. Ryter SW, Tyrrell RM (2000) The heme synthesis and degradation pathways: role in oxidant sensitivity. Heme oxygenase has both pro- and antioxidant properties. Free Radical Biol Med 28:289–309

    Article  CAS  Google Scholar 

  243. Etchegaray JP, Lee C, Wade PA et al (2003) Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 421:177–182

    Article  PubMed  CAS  Google Scholar 

  244. Woelfle MA, Johnson CH (2006) No promoter left behind: global circadian gene expression in cyanobacteria. J Biol Rhythms 21:419–431

    Article  PubMed  CAS  Google Scholar 

  245. Shckorbatov YG, Zhuravlyova LA, Navrotskaya VV et al (2005) Chromatin structure and the state of human organism. Cell Biol Internat 29:77–81

    Article  CAS  Google Scholar 

  246. Kondratov RV (2007) A role of the circadian system and circadian proteins in aging. Ageing Res Rev 6:12–27

    Article  PubMed  CAS  Google Scholar 

  247. Bordone L, Guarente L (2005) Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol 6:298–305

    Article  PubMed  CAS  Google Scholar 

  248. Kang HL, Benzer S, Min KT (2002) Life extension in Drosophila by feeding a drug. PNAS 99:838–843

    Article  PubMed  CAS  Google Scholar 

  249. Noh KM, Koh JY (2000) Induction and activation by zinc of NADPH oxidase in cultured cortical neurons and astrocytes. J Neurosci 20:1–5

    Google Scholar 

  250. Tammariello SP, Quinn MT, Estus S (2000) NADPH oxidase contributes directly to oxidative stress and apoptosis in nerve growth factor-deprived sympathetic neurons. J Neurosci 20(RC53):1–5

    Google Scholar 

  251. Cai H (2005) NAD(P)H oxidase-dependent self-propagation of hydrogen peroxide and vascular disease. Circ Res 96:818–822

    Article  PubMed  CAS  Google Scholar 

  252. Lopez-Real A, Rey P, Soto-Otero R et al (2005) Angiotensin-converting enzyme inhibition reduces oxidative stress and protects dopaminergic neurons in a 6-hydroxydopamine rat model of parkinsonism. J Neurosci Res 81:865–873

    Article  PubMed  CAS  Google Scholar 

  253. Przedborski S, Ischiropoulos H (2005) Reactive oxygen and nitrogen species: weapons of neuronal destruction in models of Parkinson’s disease. Antioxid Redox Signal 7:685–693

    Article  PubMed  CAS  Google Scholar 

  254. Rey P, Lopez-Real A, Sanchez-Iglesias S et al (2007) Angiotensin type-1-receptor antagonists reduce 6-hydroxydopamine toxicity for dopaminergic neurons. Neurobiol Aging 28:555–567

    Article  PubMed  CAS  Google Scholar 

  255. Morre DM, Lenaz G, Morre DJ (2000) Surface oxidase and oxidative stress propagation in aging. J Exp Biol 203:1513–1521

    PubMed  CAS  Google Scholar 

  256. Morre DJ, Morre DM (2003) Cell surface NADH oxidases (ECTO-NOX proteins) with roles in cancer, cellular time keeping, growth, aging and neurodegenerative diseases. Free Radical Res 37:795–808

    Article  CAS  Google Scholar 

  257. Orczyk J, Morre DM, Morre DJ (2005) Periodic fluctuations in oxygen consumption comparing HeLa (cancer) and CHO (non-cancer) cells and response to external NAD(P)+/NAD(P)H. Mol Cell Biochem 273:161–167

    Article  PubMed  CAS  Google Scholar 

  258. Crane FL, Low H (2005) Plasma membrane redox and control of sirtuin. AGE 27:147–152

    Article  CAS  Google Scholar 

  259. Kirsch M, De Groot H (2001) NAD(P)H, a directly operating antioxidant? FASEB J 15:1569–1574

    Article  PubMed  CAS  Google Scholar 

  260. Gery S, Komatsu N, Baldjyan L et al (2006) The circadian gene Per1 plays an important role in cell growth and DNA damage control in human cancer cells. Mol Cell 22:375–382

    Article  PubMed  CAS  Google Scholar 

  261. Burdon RH (1995) Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radical Biol Med 18:775–794

    Article  CAS  Google Scholar 

  262. Ammendola R, Ruocchio MR, Chirico G et al (2002) Inhibition of NADH/NADPH oxidase affects signal transduction by growth factor receptors in normal fibroblasts. Arch Biochem Biophys 397:253–257

    Article  PubMed  CAS  Google Scholar 

  263. Miller BH, McDearmon EL, Panda S et al (2007) Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. PNAS 104:3342–3347

    Article  PubMed  CAS  Google Scholar 

  264. Froy O, Chapnik N, Miskin R (2006) Long-lived αMUPA transgenic mice exhibit pronounced circadian rhythms. Am J Physiol Endocrinol Metab 291:E1017–E1024

    Article  PubMed  CAS  Google Scholar 

  265. Kaasik K, Lee CC (2004) Reciprocal regulation of haem biosynthesis and the circadian clock in mammals. Nature 430:467–471

    Article  PubMed  CAS  Google Scholar 

  266. Venkatachalam P, de Toledo SM, Pandey BN et al (2008) Regulation of normal cell cycle progression by flavin-containing oxidases. Oncogene 27:20–31

    Article  PubMed  CAS  Google Scholar 

  267. Lambeth JD (2007) Nox enzymes, ROS, and chronic disease: an example of antagonistic pleiotropy. Free Radical Biol Med 43:332–347

    Article  CAS  Google Scholar 

  268. Reddy AB, Karp NA, Maywood ES et al (2006) Circadian orchestration of the hepatic proteome. Curr Biol 16:1107–1115

    Article  PubMed  CAS  Google Scholar 

  269. Akhtar RA, Reddy AB, Maywood ES et al (2002) Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Current Biol 12:540–550

    Article  CAS  Google Scholar 

  270. Young MW (2004) An ultradian clock shapes genome expression in yeast. PNAS 101:1118–1119

    Article  PubMed  CAS  Google Scholar 

  271. Schibler U, Naef F (2005) Cellular oscillators: rhythmic gene expression and metabolism. Curr Opin Cell Biol 17:223–229

    Article  PubMed  CAS  Google Scholar 

  272. Sato TK, Panda S, Kay SA et al (2003) DNA arrays: applications and implications for circadian biology. J Biol Rhythms 18:96–105

    Article  PubMed  CAS  Google Scholar 

  273. Hunt T, Sassone-Corsi P (2007) Riding tandem: Circadian clocks and the cell cycle. Cell 129:461–464

    Article  PubMed  CAS  Google Scholar 

  274. Klevecz RR, Bolen J, Forrest G, Murray DB (2004) A genomewide oscillation in transcription gates DNA replication and cell cycle. PNAS 101:1200–1205

    Article  PubMed  CAS  Google Scholar 

  275. Chen Z, Odstrcil EA, Tu BP et al (2007) Restriction of DNA replication to the reductive phase of the metabolic cycle protects genome integrity. Science 316:1916–1919

    Article  PubMed  CAS  Google Scholar 

  276. De Monte S, d’ Ovidio F, Dano S et al (2007) Dynamical quorum sensing: Population density encoded in cellular dynamics. PNAS 104:18377–18381

    Article  PubMed  Google Scholar 

  277. Desai VG, Moland CL, Branham WS et al (2004) Changes in expression level of genes as a function of time of day in the liver of rats. Mut Res 549:115–129

    CAS  Google Scholar 

  278. Brauer MJ, Huttenhower C, Airoldi EM et al (2008) Coordination of growth rate, cell cycle, stress response, and metabolic activity in yeast. Mol Biol Cell 19:352–367

    Article  PubMed  CAS  Google Scholar 

  279. Murray DB, Roller S, Kuriyama H et al (2001) Clock control of ultradian respiratory oscillation found during yeast continuous culture. J Bacteriol 183:7253–7259

    Article  PubMed  CAS  Google Scholar 

  280. Everson CA, Laatsch CD, Hogg N (2005) Antioxidant defense responses to sleep loss and sleep recovery. Am J Physiol Regul Integr Comp Physiol 288:R374–R383

    PubMed  CAS  Google Scholar 

  281. Lloyd D, Eshantha L, Salgado J et al (2002) Respiratory oscillations in yeast: clock-driven mitochondrial cycles of energization. FEBS Lett 519:41–44

    Article  PubMed  CAS  Google Scholar 

  282. Lloyd D, Eshantha L, Salgado J et al (2002) Cycles of mitochondrial energization driven by the ultradian clock in a continuous culture of Saccharomyces cerevisiae. Microbiology 148:3715–3724

    CAS  Google Scholar 

  283. Murray DB, Engelen F, Lloyd D et al (1999) Involvement of glutathione in the regulation of respiratory oscillation during a continuous culture of Saccharomyces cerevisiae. Microbiology 145:2739–2745

    CAS  Google Scholar 

  284. Honda K, Komoda Y, Inoue S (1994) Oxidized glutathione regulates physiological sleep in unrestrained rats. Brain Res 14:253–258

    Article  Google Scholar 

  285. Murray DB, Beckmann M, Kitano H (2007) Regulation of yeast oscillatory dynamics. PNAS 104:2241–2246

    Article  PubMed  CAS  Google Scholar 

  286. Salgado E, Murray DB, Lloyd D (2002) Some antidepressant agents (Li+, monoamine oxidase type A inhibitors) perturb the ultradian clock in Saccharomyces cerevisiae. Biol Rhythm Res 33:351–361

    Article  CAS  Google Scholar 

  287. Fu L, Pelicano H, Liu J, Huang P, Lee CC (2002) The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 111:41–50

    Article  PubMed  CAS  Google Scholar 

  288. McDonald MJ, Rosbash M (2001) Microarray analysis and organization of circadian gene expression in Drosophila. Cell 107:567–578

    Article  PubMed  CAS  Google Scholar 

  289. Maret S, Dorsaz S, Gurcel L et al (2007) Homer1a is a core brain molecular correlate of sleep loss. PNAS 104:20090–20095

    Article  PubMed  CAS  Google Scholar 

  290. Mackiewicz M, Shockley KR, Romer MA et al (2007) Macromolecule biosynthesis: a key function of sleep. Physiol Genomics 31:441–457

    Article  PubMed  CAS  Google Scholar 

  291. Jones S, Pfister-Genskow M, Benca RM et al (2008) Molecular correlates of sleep and wakefulness in the brain of the white-crowned sparrow. J Neurochem 105:46–62

    Article  PubMed  CAS  Google Scholar 

  292. Wright K (2002) Times of our lives. Sci Am 287:59–65

    Article  Google Scholar 

  293. Mignot E, Taheri S, Nishino S (2002) Sleeping with the hypothalamus: emerging therapeutic targets for sleep disorders. Nat Neurosci 5:1071–1075

    Article  PubMed  CAS  Google Scholar 

  294. Cirelli C, Faraguna U, Tononi G (2006) Changes in gene expression after long-term sleep deprivation. J Neurochem 98:1632–1645

    Article  PubMed  CAS  Google Scholar 

  295. Fadel J, Deutch AY (2002) Anatomical substrates of orexin-dopamine interactions: lateral hypothalamic projections to the ventral tegmental area. Neuroscience 111:379–387

    Article  CAS  Google Scholar 

  296. Korotkova TM, Sergeeva OA, Eriksson KS et al (2003) Excitation of ventral tegmental area dopaminergic and nondopaminergic neurons by orexins/hypocretins. J Neurosci 23:7–11

    PubMed  CAS  Google Scholar 

  297. Alberto CO, Trask RB, Quinlan ME et al (2006) Bidirectional dopaminergic modulation of excitatory synaptic transmission in orexin neurons. J Neurosci 26:10043–10050

    Article  PubMed  CAS  Google Scholar 

  298. Narita M, Nagumo Y, Hashimoto S et al (2006) Direct involvement of orexinergic systems in the activation of the mesolimbic dopamine pathway and related behaviors induced by morphine. J Neurosci 26:398–405

    Article  PubMed  CAS  Google Scholar 

  299. Rye DB (2004) The two faces of Eve: Dopamine’s modulation of wakefulness and sleep. Neurology 63:S2–S7

    Google Scholar 

  300. Weaver DR, Rivkees SA, Reppert SM (1992) D1-dopamine receptors activate c-fos expression in the fetal suprachiasmatic nuclei. PNAS 89:9201–9204

    Article  PubMed  CAS  Google Scholar 

  301. Michel S, Geusz ME, Zaritsky JJ et al (1993) Circadian rhythm in membrane conductance expressed in isolated neurons. Science 259:239–241

    Article  PubMed  CAS  Google Scholar 

  302. Manglapus MK, Iuvone PM, Underwood H et al (1999) Dopamine mediates circadian rhythms of rod-cone dominance in the Japanese quail retina. J Neurosci 19:4132–4141

    PubMed  CAS  Google Scholar 

  303. Steenhard BM, Besharse JC (2000) Phase shifting the retinal circadian clock: xPer2 mRNA induction by light and dopamine. J Neurosci 20:8572–8577

    PubMed  CAS  Google Scholar 

  304. Doyle SE, Grace MS, McIvor W et al (2002) Circadian rhythms of dopamine in mouse retina: the role of melatonin. Visual Neurosci 19:593–601

    Google Scholar 

  305. Green CB, Besharse JC (2004) Retinal circadian clocks and control of retinal physiology. J Biol Rhythms 19:91–102

    Article  PubMed  CAS  Google Scholar 

  306. Ribelayga C, Wang Y, Mangel SC (2003) A circadian clock in the fish retina regulates dopamine release via activation of melatonin receptors. J Physiol 554(2):467–482

    Article  PubMed  CAS  Google Scholar 

  307. Bartell PA, Miranda-Anaya M, McIvor W et al (2007) Interactions between dopamine and melatonin organize circadian rhythmicity in the retina of the green iguana. J Biol Rhythms 22:515–523

    Article  PubMed  CAS  Google Scholar 

  308. Tosini G, Davidson AJ, Fukuhara C et al (2007) Localization of a circadian clock in mammalian photoreceptors. FASEB J 21:3866–3871

    Article  PubMed  CAS  Google Scholar 

  309. Yujnovsky I, Hirayama J, Doi M et al (2006) Signaling mediated by the dopamine D2 receptor potentiates circadian regulation by CLOCK:BMAL1. PNAS 103:6386–6391

    Article  PubMed  CAS  Google Scholar 

  310. Yan L, Bobula JM, Svenningsson P et al (2006) DARPP-32 involvement in the photic pathway of the circadian system. J Neurosci 26:9434–9438

    Article  PubMed  CAS  Google Scholar 

  311. Djamgoz MBA, Hankins MW, Hirano J et al (1997) Neurobiology of retinal dopamine in relation to degenerative states of the tissue. Vision Res 37:3509–3529

    Article  PubMed  CAS  Google Scholar 

  312. Buttner T, Kuhn W, Patzold T, Przuntek H (1994) L-DOPA improves colour vision in Parkinson’s disease. J Neural Transm 7:13–19

    Article  CAS  Google Scholar 

  313. Muller T, Woitalla D, Peters S et al (2002) Progress of visual dysfunction in Parkinson’s disease. Acta Neurol Scand 105:256–260

    Article  PubMed  CAS  Google Scholar 

  314. Lee JY, Djamgoz MBA (1997) Retinal dopamine depletion in young quail mimics some of the effects of ageing on visual function. Vision Res 37:1103–1113

    Article  PubMed  CAS  Google Scholar 

  315. Hankins MW (2000) Functional dopamine deficits in the senile rat retina. Visual Neurosci 17:839–845

    Article  CAS  Google Scholar 

  316. Kunert KS, Fitzgerald ME, Thomson L et al (1999) Microglia increase as photoreceptors decrease in the aging avian retina. Curr Eye Res 18:440–447

    Article  PubMed  CAS  Google Scholar 

  317. Castaneda TR, de Prado BM, Prieto D et al (2004) Circadian rhythms of dopamine, glutamate and GABA in the striatum and nucleus accumbens of the awake rat: modulation by light. J Pineal Res 36:177–185

    Article  PubMed  CAS  Google Scholar 

  318. McClung CA, Sidiropoulou K, Vitaterna M et al (2005) Regulation of dopaminergic transmission and cocaine reward by the Clock gene. PNAS 28:9377–9381

    Article  CAS  Google Scholar 

  319. Andretic R, van Swinderen B, Greenspan RJ (2005) Dopaminergic modulation of arousal in Drosophila. Curr Biol 15:1165–1175

    Article  CAS  Google Scholar 

  320. Andretic R, Hirsh J (2000) Circadian modulation of dopamine receptor responsiveness in Drosophila melanogaster. PNAS 97:1873–1878

    Article  PubMed  CAS  Google Scholar 

  321. Feany MB, Bender WW (2000) A Drosophila model of Parkinson’s disease. Nature 404:394–398

    Article  PubMed  CAS  Google Scholar 

  322. Hurd MW, Ralph MR (1998) The significance of circadian organization for longevity in the golden hamster. J Biol Rhythms 13:430–436

    Article  PubMed  CAS  Google Scholar 

  323. Oklejewicz M, Daan S (2002) Enhanced longevity in Tau mutant Syrian hamsters, Mesocricetus auratus. J Biol Rhythms 17:210–216

    Article  PubMed  Google Scholar 

  324. Cayetanot F, Perret M, Aujard F (2005) Shortened seasonal photoperiodic cycles accelerate aging of the diurnal and circadian locomotor activity rhythms in a primate. J Biol Rhythms 20:461–469

    Article  PubMed  CAS  Google Scholar 

  325. Hofman MA, Swaab DF (2006) Living by the clock: The circadian pacemaker in older people. Ageing Res Rev 5:33–51

    Article  PubMed  CAS  Google Scholar 

  326. Davidson AJ, Sellix MT, Daniel J et al (2006) Chronic jet-lag increases mortality in aged mice. Curr Biol 16:R914–R916

    Article  PubMed  CAS  Google Scholar 

  327. Coto-Montes A, Hardeland R (1999) Diurnal rhythm of protein carbonyl as an indicator of oxidative damage in Drosophila melanogaster: influence of clock gene alleles and deficiencies in the formation of free-radical scavengers. Biol Rhythm Res 30:383–391

    Article  CAS  Google Scholar 

  328. Kondratov RV, Kondratova AA, Gorbacheva VY et al (2006) Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock. Genes Dev 20:1868–1873

    Article  PubMed  CAS  Google Scholar 

  329. Weber M, Lauterburg T, Tobler I et al (2004) Circadian patterns of neurotransmitter related gene expression in motor regions of the rat brain. Neurosci Lett 358:17–20

    Article  CAS  Google Scholar 

  330. Andretic R, Chaney S, Hirsh J (1999) Requirement of circadian genes for cocaine sensitization in Drosophila. Science 285:1066–1068

    Article  PubMed  CAS  Google Scholar 

  331. Oster H, Baeriswyl S, van der Horst GTJ et al (2003) Loss of circadian rhythmicity in aging mPer1−/− mCry2−/− mutant mice. Genes Dev 17:1366–1379

    Article  PubMed  CAS  Google Scholar 

  332. Aujard F, Cayetanot F, Bentivoglio M et al (2006) Age-related effects on the biological clock and its behavioral output in a primate. Chronobiol Int 23:451–460

    Article  PubMed  CAS  Google Scholar 

  333. Esquifino AI, Cano P, Jimenez V et al (2004) Changes of prolactin regulatory mechanisms in aging: 24-h rhythms of serum prolactin and median eminence and adenohypophysial concentration of dopamine, serotonin (γ-aminobutyric acid, taurine and somatostatin in young and aged rats. Exp Gerontol 39:45–52

    Article  PubMed  CAS  Google Scholar 

  334. Gjerstad MD, Wentzel-Larsen T, Aarsland D et al (2007) Insomnia in Parkinson’s disease: frequency and progression over time. J Neurol Neurosurg Psychiatry 78:476–479

    Article  PubMed  CAS  Google Scholar 

  335. Thannickal TC, Lai YY, Siegel JM (2007) Hypocretin (orexin) cell loss in Parkinson’s disease. Brain 130:1586–1595

    Article  PubMed  Google Scholar 

  336. Rye DB, Jankovic J (2002) Emerging views of dopamine in modulating sleep/wake state from an unlikely source: PD. Neurol 58:341–346

    Google Scholar 

  337. Koh K, Evans JM, Hendricks JC et al (2006) A Drosophila model for age-associated changes in sleep:wake cycles. PNAS 103:13843–13847

    Article  PubMed  CAS  Google Scholar 

  338. Zhu Y, Fenik P, Zhan G et al (2007) Selective loss of catecholaminergic wake-active neurons in a murine sleep apnea model. J Neurosci 27:10060–10071

    Article  PubMed  CAS  Google Scholar 

  339. Prevarskaya NB, Skryma RN, Vacher P et al (1995) Role of tyrosine phosphorylation in potassium channel activation. J Biol Chem 270:24292–24299

    Article  PubMed  CAS  Google Scholar 

  340. Sherer TB, Betarbet R, Stout AK et al (2002) An in vitro model of Parkinson’s disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J Neurosci 22:7006–7015

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. David Rollo.

Additional information

Special issue article in honor of Dr. Akitne Mori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rollo, C.D. Dopamine and Aging: Intersecting Facets. Neurochem Res 34, 601–629 (2009). https://doi.org/10.1007/s11064-008-9858-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9858-7

Keywords

Navigation