Skip to main content

Advertisement

Log in

Upregulation of BACE1 and β-Amyloid Protein Mediated by Chronic Cerebral Hypoperfusion Contributes to Cognitive Impairment and Pathogenesis of Alzheimer’s Disease

  • ORIGINAL PAPER
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Chronic cerebral hypoperfusion (CCH) increases the risk of Alzheimer disease (AD) through several biologically plausible pathways, but the relationship between CCH and the development of AD remains uncertain. To investigate expression of APP, BACE1 and Aβ in the hippocampus of BCCAO rats and study pathophysiological mechanism of AD from CCH. CCH rat model was established by chronic bilateral common carotid artery occlusion (BCCAO). Behavior was evaluated after BCCAO with Morris water maze and open-field task. Expression of Aβ was measured by enzyme linked immunosorbent assay (ELISA). β-Amyloid precursor protein cleavage enzyme 1 (BACE1) and β-amyloid precursor protein (APP) were tested by ELISA, Western blotting and RT-PCR. Cognitive impairment occurred with CCH by Morris water maze test and open-field task. The BACE1 and Aβ level in BCCAO rats was more increased than sham-operation control rats (P < 0.01) but APP had no difference(P > 0.05). The expression of BACE1 and Aβ has no inter-grouop difference in BCCAO rats (P > 0.05). The level of BACE1 and Aβ had positive correlation with cognitive impairment (P < 0.01) while no correlation was observed between APP and cognitive impairment. Chronic cerebral ischemia contributes to cognitive impairment and vascular pathogenesis of Alzheimer’s disease that chronic cerebral hypoperfusion increases BACE1 and Aβ level in brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kumaran D, Udayabanu M, Kumar M et al (2008) Involvement of angiotensin converting enzyme in cerebral hypoperfusion induced anterograde memory impairment and cholinergic dysfunction in rats. Neuroscience 155:626–639. doi:10.1016/j.neuroscience.2008.06.023

    Article  PubMed  CAS  Google Scholar 

  2. Lee JH, Park SY, Shin HK et al (2008) Protective effects of cilostazol against transient focal cerebral ischemia and chronic cerebral hypoperfusion injury. CNS Neurosci Ther 14:143–152. doi:10.1111/j.1527-3458.2008.00042.x

    Article  PubMed  CAS  Google Scholar 

  3. He Z, Huang L, Wu Y et al (2008) DDPH: improving cognitive deficits beyond its alpha 1-adrenoceptor antagonism in chronic cerebral hypoperfused rats. Eur J Pharmacol 588:178–188. doi:10.1016/j.ejphar.2008.03.060

    Article  PubMed  CAS  Google Scholar 

  4. Zheng P, Zhang J, Liu H et al (2008) Angelica injection reduces cognitive impairment during chronic cerebral hypoperfusion through brain-derived neurotrophic factor and nerve growth factor. Curr Neurovasc Res 5:13–20. doi:10.2174/156720208783565636

    Article  PubMed  Google Scholar 

  5. Zadori D, Datki Z, Penke B (2007) The role of chronic brain hypoperfusion in the pathogenesis of Alzheimer’s disease—facts and hypotheses. Ideggyogy Sz 60:428–437

    PubMed  Google Scholar 

  6. Hamel E, Nicolakakis N, Aboulkassim T et al (2008) Oxidative stress and cerebrovascular dysfunction in mouse models of Alzheimer’s disease. Exp Physiol 93:116–120. doi:10.1113/expphysiol.2007.038729

    Article  PubMed  CAS  Google Scholar 

  7. Gackowski D, Rozalski R, Siomek A et al (2008) Oxidative stress and oxidative DNA damage is characteristic for mixed Alzheimer disease/vascular dementia. J Neurol Sci 266:57–62. doi:10.1016/j.jns.2007.08.041

    Article  PubMed  CAS  Google Scholar 

  8. Price DL, Sisodia SS, Gandy SE (1995) Amyloid beta amyloidosis in Alzheimer’s disease. Curr Opin Neurol 8:268–274

    Article  PubMed  CAS  Google Scholar 

  9. Wilson CA, Doms RW, Lee VM (1999) Intracellular APP processing and A beta production in Alzheimer disease. J Neuropathol Exp Neurol 58:787–794. doi:10.1097/00005072-199908000-00001

    Article  PubMed  CAS  Google Scholar 

  10. Iqbal K, Novak M (2006) From tangles to tau protein. Bratisl Lek Listy (Tlacene Vyd) 107:341–342

    CAS  Google Scholar 

  11. Brandt R, Leschik J (2004) Functional interactions of tau and their relevance for Alzheimer’s disease. Curr Alzheimer Res 1:255–269. doi:10.2174/1567205043332054

    Article  PubMed  CAS  Google Scholar 

  12. Kurt MA, Davies DC, Kidd M (1997) Paired helical filament morphology varies with intracellular location in Alzheimer’s disease brain. Neurosci Lett 239:41–44. doi:10.1016/S0304-3940(97)00876-8

    Article  PubMed  CAS  Google Scholar 

  13. Sisodia SS, Price DL (1995) Role of the beta-amyloid protein in Alzheimer’s disease. FASEB J 9:366–370

    PubMed  CAS  Google Scholar 

  14. Piazzi L, Cavalli A, Colizzi F et al (2008) Multi-target-directed coumarin derivatives: hAChE and BACE1 inhibitors as potential anti-Alzheimer compounds. Bioorg Med Chem Lett 18:423–426. doi:10.1016/j.bmcl.2007.09.100

    Article  PubMed  CAS  Google Scholar 

  15. Parsons RB, Austen BM (2007) Protein–protein interactions in the assembly and subcellular trafficking of the BACE (beta-site amyloid precursor protein-cleaving enzyme) complex of Alzheimer’s disease. Biochem Soc Trans 35:974–979. doi:10.1042/BST0350974

    Article  PubMed  CAS  Google Scholar 

  16. Bennett BD, Denis P, Haniu M et al (2000) A furin-like convertase mediates propeptide cleavage of BACE, the Alzheimer’s beta -secretase. J Biol Chem 275:37712–37717. doi:10.1074/jbc.M005339200

    Article  PubMed  CAS  Google Scholar 

  17. Fu H, Li W, Luo J et al (2008) Promising anti-Alzheimer’s dimer bis(7)-tacrine reduces beta-amyloid generation by directly inhibiting BACE-1 activity. Biochem Biophys Res Commun 366:631–636. doi:10.1016/j.bbrc.2007.11.068

    Article  PubMed  CAS  Google Scholar 

  18. Zacchetti D, Chieregatti E, Bettegazzi B et al (2007) BACE1 expression and activity: relevance in Alzheimer’s disease. Neurodegener Dis 4:117–126. doi:10.1159/000101836

    Article  PubMed  CAS  Google Scholar 

  19. Pappas BA, de la Torre JC, Davidson CM et al (1996) Chronic reduction of cerebral blood flow in the adult rat: late-emerging CA1 cell loss and memory dysfunction. Brain Res 708:50–58. doi:10.1016/0006-8993(95)01267-2

    Article  PubMed  CAS  Google Scholar 

  20. Farkas E, Institoris A, Domoki F et al (2004) Diazoxide and dimethyl sulphoxide prevent cerebral hypoperfusion-related learning dysfunction and brain damage after carotid artery occlusion. Brain Res 1008:252–260

    Article  PubMed  CAS  Google Scholar 

  21. Gschanes A, Valouskova V, Windisch M (1997) Ameliorative influence of a nootropic drug on motor activity of rats after bilateral carotid artery occlusion. J Neural Transm 104:1319–1327. doi:10.1007/BF01294733

    Article  PubMed  CAS  Google Scholar 

  22. Gonder JC, Laber K (2007) A renewed look at laboratory rodent housing and management. ILAR J 48:29–36

    PubMed  CAS  Google Scholar 

  23. Cass JS, Campbell IR, Lange L (1963) A guide to production, care and use of laboratory animals. An annotated bibliography. 1. Normal anatomy, physiology, psychology, including the role of factors in the environment. Fed Proc 3:1–55

    PubMed  CAS  Google Scholar 

  24. Wenk GL (2004) Assessment of spatial memory using the radial arm maze and Morris water maze. Curr Protoc Neurosci Chap. 8: Unit 8.5A

  25. Mello PB, Benetti F, Cammarota M et al (2008) Effects of acute and chronic physical exercise and stress on different types of memory in rats. An Acad Bras Cienc 80:301–309. doi:10.1590/S0001-37652008000200008

    PubMed  Google Scholar 

  26. Li J, Bian WL, Xie GQ et al (2008) Chronic ethanol intake-induced changes in open-field behavior and calcium/calmodulin-dependent protein kinase IV expression in nucleus accumbens of rats: naloxone reversal. Acta Pharmacol Sin 29:646–652. doi:10.1111/j.1745-7254.2008.00805.x

    Article  PubMed  CAS  Google Scholar 

  27. Meredith JE Jr, Thompson LA, Toyn JH et al (2008) P-glycoprotein efflux and other factors limit brain amyloid beta reduction by beta-site amyloid precursor protein-cleaving enzyme 1 inhibitors in mice. J Pharmacol Exp Ther 326:502–513. doi:10.1124/jpet.108.138974

    Article  PubMed  CAS  Google Scholar 

  28. Ozmen L, Woolley M, Albientz A et al (2005) BACE/APPV717F double-transgenic mice develop cerebral amyloidosis and inflammation. Acta Neuropathol 2:284–298

    CAS  Google Scholar 

  29. Valles SL, Blanco AM, Pascual M et al (2004) Chronic ethanol treatment enhances inflammatory mediators and cell death in the brain and in astrocytes. Brain Pathol 14:365–371

    PubMed  CAS  Google Scholar 

  30. De Jong GI, De Vos RA, Steur EN et al (1997) Cerebrovascular hypoperfusion: a risk factor for Alzheimer’s disease? Animal model and postmortem human studies. Ann NY Acad Sci 826:56–74. doi:10.1111/j.1749-6632.1997.tb48461.x

    Article  PubMed  Google Scholar 

  31. Sarti C, Pantoni L, Bartolini L et al (2002) Cognitive impairment and chronic cerebral hypoperfusion: what can be learned from experimental models. J Neurol Sci 203–204:263–266. doi:10.1016/S0022-510X(02)00302-7

    Article  PubMed  Google Scholar 

  32. Chmayssani M, Festa JR, Marshall RS (2007) Chronic ischemia and neurocognition. Neuroimaging Clin N Am 17:313–324. doi:10.1016/j.nic.2007.03.002

    Article  PubMed  Google Scholar 

  33. Shibata M, Yamasaki N, Miyakawa T et al (2007) Selective impairment of working memory in a mouse model of chronic cerebral hypoperfusion. Stroke 38:2826–2832. doi:10.1161/STROKEAHA.107.490151

    Article  PubMed  Google Scholar 

  34. Yoshizaki K, Adachi K, Kataoka S et al (2008) Chronic cerebral hypoperfusion induced by right unilateral common carotid artery occlusion causes delayed white matter lesions and cognitive impairment in adult mice. Exp Neurol 210:585–591. doi:10.1016/j.expneurol.2007.12.005

    Article  PubMed  Google Scholar 

  35. Cai ZY, Yan Y, Sun SQ et al (2008) Minocycline attenuates cognitive impairment and restrains oxidative stress in the hippocampus of rats with chronic cerebral hypoperfusion. Neurosci Bull 24:305–313. doi:10.1007/s12264-008-0324-y

    Article  PubMed  CAS  Google Scholar 

  36. Farkas E, Timmer NM, Domoki F et al (2005) Post-ischemic administration of diazoxide attenuates long-term microglial activation in the rat brain after permanent carotid artery occlusion. Neurosci Lett 387:168–172. doi:10.1016/j.neulet.2005.06.036

    Article  PubMed  CAS  Google Scholar 

  37. Ni J, Ohta H, Matsumoto K et al (1994) Progressive cognitive impairment following chronic cerebral hypoperfusion induced by permanent occlusion of bilateral carotid arteries in rats. Brain Res 653:231–236. doi:10.1016/0006-8993(94)90394-8

    Article  PubMed  CAS  Google Scholar 

  38. Bennett SA, Tenniswood M, Chen JH et al (1998) Chronic cerebral hypoperfusion elicits neuronal apoptosis and behavioral impairment. Neuroreport 9:161–166. doi:10.1097/00001756-199801260-00015

    Article  PubMed  CAS  Google Scholar 

  39. Ohta H, Nishikawa H, Kimura H et al (1997) Chronic cerebral hypoperfusion by permanent internal carotid ligation produces learning impairment without brain damage in rats. Neuroscience 79:1039–1050. doi:10.1016/S0306-4522(97)00037-7

    Article  PubMed  CAS  Google Scholar 

  40. Shibata M, Ohtani R, Ihara M et al (2004) White matter lesions and glial activation in a novel mouse model of chronic cerebral hypoperfusion. Stroke 35:2598–2603. doi:10.1161/01.STR.0000143725.19053.60

    Article  PubMed  Google Scholar 

  41. Aliev G, Smith MA, Obrenovich ME et al (2003) Role of vascular hypoperfusion-induced oxidative stress and mitochondria failure in the pathogenesis of Azheimer disease. Neurotox Res 5:491–504

    PubMed  Google Scholar 

  42. de la Torre JC, Pappas BA, Prevot V et al (2003) Hippocampal nitric oxide upregulation precedes memory loss and A beta 1–40 accumulation after chronic brain hypoperfusion in rats. Neurol Res 25:635–641. doi:10.1179/016164103101201931

    Article  PubMed  Google Scholar 

  43. de la Torre JC, Aliev G (2005) Inhibition of vascular nitric oxide after rat chronic brain hypoperfusion: spatial memory and immunocytochemical changes. J Cereb Blood Flow Metab 25:663–672. doi:10.1038/sj.jcbfm.9600057

    Article  PubMed  CAS  Google Scholar 

  44. Antoine V, Rigaud AS (2006) Alzheimer’s disease: cardiovascular risk factors must be assessed. Rev Med Interne 27:21–31. doi:10.1016/j.revmed.2005.04.037

    Article  PubMed  CAS  Google Scholar 

  45. Vassar R (2005) beta-Secretase, APP and A beta in Alzheimer’s disease. Subcell Biochem 38:79–103. doi:10.1007/0-387-23226-5_4

    Article  PubMed  CAS  Google Scholar 

  46. Mihailovich M, Thermann R, Grohovaz F et al (2007) Complex translational regulation of BACE1 involves upstream AUGs and stimulatory elements within the 5′ untranslated region. Nucleic Acids Res 35:2975–2985. doi:10.1093/nar/gkm191

    Article  PubMed  CAS  Google Scholar 

  47. Stockley JH, O’Neill C (2007) The proteins BACE1 and BACE2 and beta-secretase activity in normal and Alzheimer’s disease brain. Biochem Soc Trans 35:574–576. doi:10.1042/BST0350574

    Article  PubMed  CAS  Google Scholar 

  48. Sun X, He G, Song W (2006) BACE2, as a novel APP theta-secretase, is not responsible for the pathogenesis of Alzheimer’s disease in Down syndrome. FASEB J 20:1369–1376. doi:10.1096/fj.05-5632com

    Article  PubMed  CAS  Google Scholar 

  49. Walter J (2006) Control of amyloid-beta-peptide generation by subcellular trafficking of the beta-amyloid precursor protein and beta-secretase. Neurodegener Dis 3:247–254. doi:10.1159/000095263

    Article  PubMed  CAS  Google Scholar 

  50. Murayama KS, Kametani F, Saito S et al (2006) Reticulons RTN3 and RTN4-B/C interact with BACE1 and inhibit its ability to produce amyloid beta-protein. Eur J Neurosci 24:1237–1244. doi:10.1111/j.1460-9568.2006.05005.x

    Article  PubMed  Google Scholar 

  51. Fluhrer R, Capell A, Westmeyer G et al (2002) A non-amyloidogenic function of BACE-2 in the secretory pathway. J Neurochem 81:1011–1020. doi:10.1046/j.1471-4159.2002.00908.x

    Article  PubMed  CAS  Google Scholar 

  52. He P, Zhong Z, Lindholm K et al (2007) Deletion of tumor necrosis factor death receptor inhibits amyloid beta generation and prevents learning and memory deficits in Alzheimer’s mice. J Cell Biol 178:829–841. doi:10.1083/jcb.200705042

    Article  PubMed  CAS  Google Scholar 

  53. Sun X, Tong Y, Qing H et al (2006) Increased BACE1 maturation contributes to the pathogenesis of Alzheimer’s disease in Down syndrome. FASEB J 20:1361–1368. doi:10.1096/fj.05-5628com

    Article  PubMed  CAS  Google Scholar 

  54. Postina R, Schroeder A, Dewachter I et al (2004) A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. J Clin Invest 113:1456–1464

    PubMed  CAS  Google Scholar 

  55. Standridge JB (2006) Vicious cycles within the neuropathophysiologic mechanisms of Alzheimer’s disease. Curr Alzheimer Res 3:95–108. doi:10.2174/156720506776383068

    Article  PubMed  CAS  Google Scholar 

  56. Sun X, He G, Qing H et al (2006) Hypoxia facilitates Alzheimer’s disease pathogenesis by up-regulating BACE1 gene expression. Proc Natl Acad Sci USA 103:18727–18732. doi:10.1073/pnas.0606298103

    Article  PubMed  CAS  Google Scholar 

  57. Yan R, Munzner JB, Shuck ME et al (2001) BACE2 functions as an alternative alpha-secretase in cells. J Biol Chem 276:34019–34027. doi:10.1074/jbc.M105583200

    Article  PubMed  CAS  Google Scholar 

  58. Hussain I, Powell DJ, Howlett DR et al (2000) ASP1 (BACE2) cleaves the amyloid precursor protein at the beta-secretase site. Mol Cell Neurosci 16:609–619. doi:10.1006/mcne.2000.0884

    Article  PubMed  CAS  Google Scholar 

  59. Capell A, Steiner H, Willem M et al (2000) Maturation and pro-peptide cleavage of beta-secretase. J Biol Chem 275:30849–30854. doi:10.1074/jbc.M003202200

    Article  PubMed  CAS  Google Scholar 

  60. Nakagawa K, Kitazume S, Oka R et al (2006) Sialylation enhances the secretion of neurotoxic amyloid-beta peptides. J Neurochem 96:924–933. doi:10.1111/j.1471-4159.2005.03595.x

    Article  PubMed  CAS  Google Scholar 

  61. Eggert S, Paliga K, Soba P et al (2004) The proteolytic processing of the amyloid precursor protein gene family members APLP-1 and APLP-2 involves alpha-, beta-, gamma-, and epsilon-like cleavages: modulation of APLP-1 processing by n-glycosylation. J Biol Chem 279:18146–18156. doi:10.1074/jbc.M311601200

    Article  PubMed  CAS  Google Scholar 

  62. Haniu M, Denis P, Young Y et al (2000) Characterization of Alzheimer’s beta-secretase protein BACE. A pepsin family member with unusual properties. J Biol Chem 275:21099–21106. doi:10.1074/jbc.M002095200

    Article  PubMed  CAS  Google Scholar 

  63. Benjannet S, Elagoz A, Wickham L et al (2001) Post-translational processing of beta-secretase (beta-amyloid-converting enzyme) and its ectodomain shedding. The pro- and transmembrane/cytosolic domains affect its cellular activity and amyloid-beta production. J Biol Chem 276:10879–10887. doi:10.1074/jbc.M009899200

    Article  PubMed  CAS  Google Scholar 

  64. Chang Y, Tesco G, Jeong WJ et al (2003) Generation of the beta-amyloid peptide and the amyloid precursor protein C-terminal fragment gamma are potentiated by FE65L1. J Biol Chem 278:51100–51107. doi:10.1074/jbc.M309561200

    Article  PubMed  CAS  Google Scholar 

  65. Marambaud P, Alves da Costa C, Ancolio K et al (1998) Alzheimer’s disease-linked mutation of presenilin 2 (N141I-PS2) drastically lowers APPalpha secretion: control by the proteasome. Biochem Biophys Res Commun 252:134–138. doi:10.1006/bbrc.1998.9619

    Article  PubMed  CAS  Google Scholar 

  66. Christensen MA, Zhou W, Qing H et al (2004) Transcriptional regulation of BACE1, the beta-amyloid precursor protein beta-secretase, by Sp1. Mol Cell Biol 24:865–874. doi:10.1128/MCB.24.2.865-874.2004

    Article  PubMed  CAS  Google Scholar 

  67. Faghihi MA, Modarresi F, Khalil AM et al (2008) Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of beta-secretase. Nat Med 14:723–730. doi:10.1038/nm1784

    Article  PubMed  CAS  Google Scholar 

  68. Wen Y, Yu WH, Maloney B et al (2008) Transcriptional regulation of beta-secretase by p25/cdk5 leads to enhanced amyloidogenic processing. J Neurosci 57:680–690

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a High Technology Research Center, Chongqing Medical University and funded by the Ministry of Civil Affairs, China. Pharmacology institution of Chongqing Medical University offered and directed Morris water maze and open-field task. Especially, more thanks to Professor Sun Shan-quan, director of anatomy institution of Chongqing Medical University, for designing and guiding this study. The authors have no conflicts of interest that are directly relevant to the content of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Yong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhiyou, C., Yong, Y., Shanquan, S. et al. Upregulation of BACE1 and β-Amyloid Protein Mediated by Chronic Cerebral Hypoperfusion Contributes to Cognitive Impairment and Pathogenesis of Alzheimer’s Disease. Neurochem Res 34, 1226–1235 (2009). https://doi.org/10.1007/s11064-008-9899-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9899-y

Keywords

Navigation