Skip to main content

Advertisement

Log in

Neurochemistry, Neuropathology, and Heredity in SAMP8: A Mouse Model of Senescence

  • Review Article
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The SAMP8 strain spontaneously develops learning and memory deficits with characteristics of aging, and is a good model for studying the mechanism of cognitive dysfunction with age. Oxidative stress occurs systemically in SAMP8 from early on in life and increases with aging. Neuropathological changes such as the deposition of Aβ, hyperphosphorylation of tau, impaired development of dendritic spines, and sponge formation, and neurochemical changes were found in the SAMP8 brain. These changes may be partially mediated by oxidative stress. Oxidative damage is a major factor in neurodegenerative disorders and aging. A decline in the respiratory control ratio suggesting mitochondrial dysfunction was found in the brain of SAMP8. The rise in oxidative stress following mitochondrial dysfunction may trigger neuropathological and neurochemical changes, disrupting the development of neural networks in the brain in SAMP8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hosokawa M (2002) A higher oxidative status accelerates senescence and aggravates age-dependent disorders in SAMP strains of mice. Mech Ageing Dev 123:1553–1561. doi:10.1016/S0047-6374(02)00091-X

    Article  PubMed  CAS  Google Scholar 

  2. Zhao XH, Awaya A, Kobayashi H, Ohnuki T, Tokumitsu Y, Nomura Y (1990) Age-related changes in uptake and release on L-[3H] noradrenaline in brain slices of senescence accelerated mouse. Int J Dev Neurosci 8:267–272. doi:10.1016/0736-5748(90)90032-W

    Article  PubMed  CAS  Google Scholar 

  3. Zhao XH, Kitamura Y, Nomura Y (1992) Age-related changes in NMDA-induced [3H] acetylcholine release from brain slices of senescence accelerated mouse. Int J Dev Neurosci 10:121–129. doi:10.1016/0736-5748(92)90040-7

    Article  PubMed  CAS  Google Scholar 

  4. Kitamura Y, Zhao XH, Ohnuki T, Takei M, Nomura Y (1992) Age-related changes in transmitter glutamate and NMDA receptor/channels in the brain of senescence-accelerated mouse. Neurosci Lett 137:169–172. doi:10.1016/0304-3940(92)90396-O

    Article  PubMed  CAS  Google Scholar 

  5. Nomura Y, Kitamura Y, Ohnuki T, Arima Y, Yamanaka Y, Sasaki K et al (1997) Alterations in acetylcholine, NMDA, benzodiazepine receptors and protein kinase C in the brain of the senescence-accelerated mouse: an animal model useful for studies on cognitive enhances. Behav Brain Res 83:51–55. doi:10.1016/S0166-4328(97)86045-7

    Article  PubMed  CAS  Google Scholar 

  6. Armbrecht HJ, Boltz MA, Kumar VB, Flood JF, Morley JE (1999) Effect of age on calcium-dependent protein in hippocampus of senescence-accelerated mice. Brain Res 842:287–293. doi:10.1016/S0006-8993(99)01802-8

    Article  PubMed  CAS  Google Scholar 

  7. Sugiyama H, Akiyama H, Akiguchi I, Kameyama M, Takeda T (1987) Loss of dendritic spines in hippocampal CA1 pyramidal cells of senescence accelerated mouse (SAM)—A quantitative Golgi study. Clin Neurol 27:841–845

    CAS  Google Scholar 

  8. Wei X, Zhang Y, Zhou J (1999) Alzheimer’s disease-related gene expression in the brain of senescence accelerated mouse. Neurosci Lett 268:139–142. doi:10.1016/S0304-3940(99)00396-1

    Article  PubMed  CAS  Google Scholar 

  9. Nomura Y, Yamanaka Y, Kitamura Y, Arima T, Ohnuki T, Oomura Y et al (1996) Senescence-accelerated mouse. Neurochemical studies on aging. Ann N Y Acad Sci 786:410–418. doi:10.1111/j.1749-6632.1996.tb39080.x

    Article  PubMed  CAS  Google Scholar 

  10. Morley JE, Kumar VB, Bernardo AE, Farr SA, Uezu K, Tumosa N et al (2000) β-amyloid precursor polypeptide in SAMP8 mice affects learning and memory. Peptides 21:1761–1767. doi:10.1016/S0196-9781(00)00342-9

    Article  PubMed  CAS  Google Scholar 

  11. Akiyama H, Kameyama M, Akiguchi I, Sugiyama H, Kawamata T, Fukuyama H et al (1986) Periodic acid-Schiff (PAS)-positive, granular structures increase in the brain of senescence accelerated mouse (SAM). Acta Neuropathol 72(2):124–129. doi:10.1007/BF00685973

    Article  PubMed  CAS  Google Scholar 

  12. Yagi H, Irino M, Matsushita T, Katoh S, Umezawa M, Tsuboyama T et al (1989) Spontaneous spongy degeneration of the brain in SAM-P/8 mice, a newly developed memory-deficient strain. J Neuropathol Exp Neurol 48:577–590. doi:10.1097/00005072-198909000-00008

    Article  PubMed  CAS  Google Scholar 

  13. Flood JF, Morley PMK, Morley JE (1995) Age-related changes in learning, memory, and lipofuscin as a function of the percentage of SAMP8 genes. Physiol Behav 58(4):819–822

    Google Scholar 

  14. Tomobe K, Isobe M, Okuma Y, Kitamura K, Oketani Y, Nomura Y (2005) Genetic analysis of learning and memory deficits in senescence-accelerated mouse (SAM). Physiol Behav 84(4):505–510. doi:10.1016/j.physbeh.2004.12.012

    Article  PubMed  CAS  Google Scholar 

  15. Cheng XR, Zhou WX, Zhang YX, Zhou DS, Yang RF, Chen LF (2007) Differential gene expression profiles in the hippocampus of senescence-accelerated mouse. Neurobiol Aging 28(4):497–506. doi:10.1016/j.neurobiolaging.2006.02.004

    Article  PubMed  CAS  Google Scholar 

  16. Miyamoto M, Kiyota Y, Yamazaki N, Nagaoka A, Matsuo T, Nagawa Y et al (1986) Age-related changes in learning and memory in the senescence-accelerated muse (SAM). Physiol Behav 38:399–406. doi:10.1016/0031-9384(86)90112-5

    Article  PubMed  CAS  Google Scholar 

  17. Takemura M, Nakamura S, Akiguchi I, Ueno M, Oka N, Ishikawa S et al (1993) β/A4 proteinlike immunoreactive granular structure in the brain of senescence-accelerated mouse. Am J Pathol 142:1887–1897

    PubMed  CAS  Google Scholar 

  18. Irizarry MC, Soriano F, McNamara M, Page KJ, Schenk D, Games D et al (1997) Abeta deposition is associated with neuropil changes, but not with overt neuronal loss in the human amyloid precursor protein V717F (PDAPP) transgenic mouse. J Neurosci 17(18):7053–7059

    PubMed  CAS  Google Scholar 

  19. Takeuchi A, Irizarry MC, Duff K, Saido TC, Hsiao Ashe K, Hasegawa M et al (2000) Age-related amyloid beta deposition in transgenic mice overexpressing both Alzheimer mutant presenilin 1 and amyloid beta precursor protein Swedish mutant is not associated with global neuronal loss. Am J Pathol 157(1):331–339

    PubMed  CAS  Google Scholar 

  20. Kumar VB, Farr SA, Flood JF, Kamlesh V, Franko M, Banks WA et al (2000) Site-directed antisense oligonucleotide decreases the expression of amyloid precursor protein and reverses deficits in learning and memory in aged SAMP8 mice. Peptides 21(12):1769–1775. doi:10.1016/S0196-9781(00)00339-9

    Article  PubMed  CAS  Google Scholar 

  21. Poon HF, Joshi G, Sultana R, Farr SA, Banks WA, Morley JE et al (2004) Antisense directed at the Abeta region of APP decreases brain oxidative markers in aged senescence accelerated mice. Brain Res 1018(1):86–96. doi:10.1016/j.brainres.2004.05.048

    Article  PubMed  CAS  Google Scholar 

  22. Wilcock DM, Alamed J, Gottschall PE, Grimm J, Rosenthal A, Pons J et al (2006) Deglycosylated anti-amyloid-beta antibodies eliminate cognitive deficits and reduce parenchymal amyloid with minimal vascular consequences in aged amyloid precursor protein transgenic mice. J Neurosci 26(20):5340–5346. doi:10.1523/JNEUROSCI.0695-06.2006

    Article  PubMed  CAS  Google Scholar 

  23. Banks WA, Farr SA, Morley JE, Wolf KM, Geylis V, Steinitz M (2007) Anti-amyloid beta protein antibody passage across the blood-brain barrier in the SAMP8 mouse model of Alzheimer’s disease: an age-related selective uptake with reversal of learning impairment. Exp Neurol 206(2):248–256. doi:10.1016/j.expneurol.2007.05.005

    Article  PubMed  CAS  Google Scholar 

  24. Canudas AM, Gutierrez-Cuesta J, Rodríguez MI, Acuña-Castroviejo D, Sureda FX, Camins A et al (2005) Hyperphosphorylation of microtubule-associated protein tau in senescence-accelerated mouse (SAM). Mech Ageing Dev 126(12):1300–1304. doi:10.1016/j.mad.2005.07.008

    Article  PubMed  CAS  Google Scholar 

  25. Yamaguchi H, Ishiguro K, Uchida T, Takashima A, Lemere CA, Imahori K (1996) Preferential labeling of Alzheimer neurofibrillary tangles with antisera for tau protein kinase (TPK) I/glycogen synthase kinase-3 beta and cyclin-dependent kinase 5, a component of TPK II. Acta Neuropathol 92(3):232–241

    Article  PubMed  CAS  Google Scholar 

  26. Baum L, Seger R, Woodgett JR, Kawabata S, Maruyama K, Koyama M et al (1995) Overexpressed tau protein in cultured cells is phosphorylated without formation of PHF: implication of phosphoprotein phosphatase involvement. Brain Res Mol Brain Res 34(1):1–17. doi:10.1016/0169-328X(95)00111-5

    Article  PubMed  CAS  Google Scholar 

  27. Pei JJ, Tanaka T, Tung YC, Braak E, Iqbal K, Grundke-Iqbal I (1997) Distribution, levels, and activity of glycogen synthase kinase-3 in the Alzheimer disease brain. J Neuropathol Exp Neurol 56(1):70–78. doi:10.1097/00005072-199701000-00007

    Article  PubMed  CAS  Google Scholar 

  28. Alvarez-García O, Vega-Naredo I, Sierra V, Caballero B, Tomás-Zapico C, Camins A et al (2006) Elevated oxidative stress in the brain of senescence-accelerated mice at 5 months of age. Biogerontology 7(1):43–52. doi:10.1007/s10522-005-6041-2

    Article  PubMed  Google Scholar 

  29. Frasier M, Walzer M, McCarthy L, Magnuson D, Lee JM, Haas C et al (2005) Tau phosphorylation increases in symptomatic mice overexpressing A30P alpha-synuclein. Exp Neurol 192(2):274–287. doi:10.1016/j.expneurol.2004.07.016

    Article  PubMed  CAS  Google Scholar 

  30. Shendelman S, Jonason A, Martinat C, Leete T, Abeliovich A (2004) DJ-1 is a redox-dependent molecular chaperone that inhibits alpha-synuclein aggregate formation. PLoS Biol 2(11):e362. doi:10.1371/journal.pbio.0020362

    Article  PubMed  Google Scholar 

  31. Bito H, Deisseroth K, Tsien RW (1996) CREB phosphorylation and dephosphorylation: a Ca2+- and stimulus duration-dependent switch for hippocampal gene expression. Cell 87:1203–1214. doi:10.1016/S0092-8674(00)81816-4

    Article  PubMed  CAS  Google Scholar 

  32. Ho N, Liauw JA, Blaeser F, Wei F, Hanissian S, Muglia LM et al (2000) Impaired synaptic plasticity and cAMP response element-binding protein activation in Ca2+/calmodulin-dependent protein kinase type IV/Gr-deficient mice. J Neurosci 20:6459–6472

    PubMed  CAS  Google Scholar 

  33. Walton M, Henderson C, Mason-Parker S, Lawlor P, Abraham WC, Bilkey D et al (1999) Immediate early gene transcription and synaptic modulation. J Neurosci Res 58:96–106. doi:10.1002/(SICI)1097-4547(19991001)58:1<96::AID-JNR10>3.0.CO;2-N

    Article  PubMed  CAS  Google Scholar 

  34. Xie H, Rothstein TL (1995) Protein kinase C mediates activation of nuclear cAMP response element-binding protein (CREB) in B lymphocytes stimulated through surface Ig. J Immunol 154:1717–1723

    PubMed  CAS  Google Scholar 

  35. Impey S, Mark M, Poser S, Chavkin C, Storm DR (1996) Induction of CRE-mediated gene expression by stimuli that generate long-lasting LTP in area CA1 of the hippocampus. Neuron 16:973–982. doi:10.1016/S0896-6273(00)80120-8

    Article  PubMed  CAS  Google Scholar 

  36. Luscher C, Nicoll RA, Malenka RC, Muller D (2000) Synaptic plasticity and dynamic modulation of the postsynaptic membrane. Nat Neurosci 3:545–550. doi:10.1038/75714

    Article  PubMed  CAS  Google Scholar 

  37. Toni N, Buchs PA, Nikonenko I, Bron CR, Muller D (1999) LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 402:421–425. doi:10.1038/46574

    Article  PubMed  CAS  Google Scholar 

  38. Tomobe K, Okuma Y, Nomura Y (2007) Impairment of CREB phosphorylation in the hippocampal CA1 region of the senescence-accelerated mouse (SAM) P8. Brain Res 1141:214–217. doi:10.1016/j.brainres.2006.08.026

    Article  PubMed  CAS  Google Scholar 

  39. Bernabeu R, Bevilaqua L, Ardenghi P, Bromberg E, Schmitz P, Bianchin M et al (1997) Involvement of hippocampal cAMP/cAMP-dependent protein kinase signaling pathways in a late memory consolidation phase of aversively motivated learning in rats. Proc Natl Acad Sci USA 94:7041–7046. doi:10.1073/pnas.94.13.7041

    Article  PubMed  CAS  Google Scholar 

  40. Bilang-Bleuel A, De Carli RS, Holsboer F, Reul HM (2002) Forced swimming evokes a biphasic response in CREB phosphorylation in extrahypothalamic limbic and neocortical brain structure in the rat. Eur J Neurosci 15:1048–1060. doi:10.1046/j.1460-9568.2002.01934.x

    Article  PubMed  CAS  Google Scholar 

  41. Schulz S, Siemer H, Krug M, Höllt V (1999) Direct evidence for biphasic cAMP responsive element-binding protein phosphorylation during long-term potentiation in the rat dentate gyrus in vivo. J Neurosci 19:5683–5692

    PubMed  CAS  Google Scholar 

  42. Silva AJ, Stevens CF, Tonegawa S, Wang Y (1992) Deficient hippocampal long-term potentiation in a-calcium-calmodulin kinase II mutant mice. Science 257:201–206. doi:10.1126/science.1378648

    Article  PubMed  CAS  Google Scholar 

  43. Abeliovich A, Chen C, Goda Y, Silva AJ, Stevens CF, Tonegawa S (1993) Modified hippocampal long-term potentiation in PKC gamma-mutant mice. Cell 75:1253–1262. doi:10.1016/0092-8674(93)90613-U

    Article  PubMed  CAS  Google Scholar 

  44. Sakimura K, Kutsuwada T, Ito I, Manabe T, Takayama C, Kushiya E et al (1995) Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor 1 subunit. Nature 373:151–155. doi:10.1038/373151a0

    Article  PubMed  CAS  Google Scholar 

  45. Bourtchuladze R, Frenguelli B, Blendy J, Cioffi D, Schutz G, Silva A (1994) Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79:59–68. doi:10.1016/0092-8674(94)90400-6

    Article  PubMed  CAS  Google Scholar 

  46. Leranth C, Shanabrough M, Horvath TL (2000) Hormonal regulation of hippocampal spine synapse density involves subcortical mediation. Neuroscience 101(2):349–356. doi:10.1016/S0306-4522(00)00369-9

    Article  PubMed  CAS  Google Scholar 

  47. Woolley CS, Weiland NG, McEwen BS, Schwartzkroin PA (1997) Estradiol increases the sensitivity of hippocampal CA1 pyramidal cells to NMDA receptor-mediated synaptic input: correlation with dendritic spine density. J Neurosci 17(5):1848–1859

    PubMed  CAS  Google Scholar 

  48. Weiland NG, Orikasa C, Hayashi S, McEwen BS (1997) Distribution and hormone regulation of estrogen receptor immunoreactive cells in the hippocampus of male and female rats. J Comp Neurol 388(4):603–612. doi:10.1002/(SICI)1096-9861(19971201)388:4<603::AID-CNE8>3.0.CO;2-6

    Article  PubMed  CAS  Google Scholar 

  49. Shors TJ, Chua C, Falduto J (2001) Sex differences and opposite effects of stress on dendritic spine density in the male versus female hippocampus. J Neurosci 21(16):6292–6297

    PubMed  CAS  Google Scholar 

  50. Prange-Kiel J, Wehrenberg U, Jarry H, Rune GM (2003) Para/autocrine regulation of estrogen receptors in hippocampal neurons. Hippocampus 13(2):226–234. doi:10.1002/hipo.10075

    Article  PubMed  CAS  Google Scholar 

  51. Shughrue PJ, Lane MV, Merchenthaler I (1997) Comparative distribution of estrogen receptor-α and -β mRNA in the rat central nervous system. J Comp Neurol 388:507–525. doi:10.1002/(SICI)1096-9861(19971201)388:4<507::AID-CNE1>3.0.CO;2-6

    Article  PubMed  CAS  Google Scholar 

  52. Nishio M, Kuroki Y, Watanabe Y (2004) Subcellular localization of estrogen receptor β in mouse hippocampus. Neurosci Lett 355:109–112. doi:10.1016/j.neulet.2003.10.064

    Article  PubMed  CAS  Google Scholar 

  53. Krezel W, Dupont S, Krust A, Chambon P, Chapman PF (2001) Increased anxiety and synaptic plasticity in estrogen receptor beta -deficient mice. Proc Natl Acad Sci USA 98(21):12278–12282. doi:10.1073/pnas.221451898

    Article  PubMed  CAS  Google Scholar 

  54. Rssman EF, Heck AL, Leonard JE, Shupnik MA, Gustafsson JA (2002) Disruption of estrogen receptor beta gene impairs spatial learning in female mice. Proc Natl Acad Sci USA 99(6):3996–4001. doi:10.1073/pnas.012032699

    Article  Google Scholar 

  55. Ábrahám IM, Han S-K, Todman MG, Korach KS, Herbison AE (2003) Estrogen receptor β meditates rapid estrogen actions on gonadotropin-releasing hormone neurons in vivo. J Neurosci 23:5771–5777

    PubMed  Google Scholar 

  56. Zhou W, An S, Fu Y, Zhang Y (2004) Age-related changes of the hippocampal estrogen receptor gene expression in senescence-accelerated mouse. In: Nomura Y, Takeda T, Okuma Y (eds) The senescence-accelerated mouse (SAM): an animal model of senescence. Elsevier, Amsterdam, pp 237–242

    Google Scholar 

  57. Nomura Y, Wang BX, Qi SB, Namba T, Kaneko S (1989) Biochemical changes related to aging in the senescence-accelerated mouse. Exp Gerontol 24:49–55. doi:10.1016/0531-5565(89)90034-X

    Article  PubMed  CAS  Google Scholar 

  58. Butterfield DA, Howard BJ, Yatin S, Allen KL, Carney JM (1997) Free radical oxidation of brain proteins in accelerated senescence and its modulation by N-tert-butyl-alpha-phenylnitrone. Proc Natl Acad Sci USA 94(2):674–678. doi:10.1073/pnas.94.2.674

    Article  PubMed  CAS  Google Scholar 

  59. Okatani Y, Wakatsuki A, Reiter RJ, Miyahara Y (2002) Melatonin reduces oxidative damage of neural lipids and proteins in senescence-accelerated mouse. Neurobiol Aging 23:639–644. doi:10.1016/S0197-4580(02)00005-2

    Article  PubMed  CAS  Google Scholar 

  60. Farr SA, Poon HF, Dogrukol-Ak D, Drake J, Banks WA, Eyerman E et al (2003) The antioxidants alpha-lipoic acid and N-acetylcysteine reverse memory impairment and brain oxidative stress in aged SAMP8 mice. J Neurochem 84(5):1173–1183. doi:10.1046/j.1471-4159.2003.01580.x

    Article  PubMed  CAS  Google Scholar 

  61. Yasui F, Ishibashi M, Matsugo S, Kojo S, Oomura Y, Sasaki K (2003) Brain lipid hydroperoxide level increases in senescence-accelerated mice at an early age. Neurosci Lett 350:66–68. doi:10.1016/S0304-3940(03)00827-9

    Article  PubMed  CAS  Google Scholar 

  62. Sato E, Kurokawa T, Oda N, Ishibashi S (1996) Early appearance of abnormality of microperoxisomal enzymes in the cerebral cortex of senescence-accelerated mouse. Mech Ageing Dev 92:175–184. doi:10.1016/S0047-6374(96)01832-5

    Article  PubMed  CAS  Google Scholar 

  63. Kurokawa T, Asada S, Nishitani S, Hazeki O (2001) Age-related changes in manganese superoxide dismutase activity in the cerebral cortex of senescence-accelerated prone and resistant mouse. Neurosci Lett 298:135–138. doi:10.1016/S0304-3940(00)01755-9

    Article  PubMed  CAS  Google Scholar 

  64. Nakahara H, Kanno T, Inai Y, Utsumi K, Hiramatsu M, Mori A et al (1998) Mitochondrial dysfunction in the senescence accelerated mouse (SAM). Free Radic Biol Med 24(1):85–92. doi:10.1016/S0891-5849(97)00164-0

    Article  PubMed  CAS  Google Scholar 

  65. Nishikawa T, Takahashi JA, Fujibayashi Y, Fujisawa H, Zhu B, Nishimura Y et al (1998) An early stage mechanism of the age-associated mitochondrial dysfunction in the brain of SAMP8 mice; an age-associated neurodegeneration animal model. Neurosci Lett 254(2):69–72. doi:10.1016/S0304-3940(98)00646-6

    Article  PubMed  CAS  Google Scholar 

  66. Xu J, Shi C, Li Q, Wu J, Forster EL, Yew DT (2007) Mitochondrial dysfunction in platelets and hippocampi of senescence-accelerated mice. J Bioenerg Biomembr 39(2):195–202. doi:10.1007/s10863-007-9077-y

    Article  PubMed  CAS  Google Scholar 

  67. Fujibayashi Y, Yamamoto S, Waki A, Konishi J, Yonekura Y (1998) Increased mitochondrial DNA deletion in the brain of SAMP8, a mouse model for spontaneous oxidative stress brain. Neurosci Lett 254:109–112. doi:10.1016/S0304-3940(98)00667-3

    Article  PubMed  CAS  Google Scholar 

  68. Butterfield DA, Koppal T, Howard B, Subramaniam R, Hall N, Hensley K et al (1998) Structural and functional changes in proteins induced by free radical-mediated oxidative stress and protective action of the antioxidants N-tert-butyl-alpha-phenylnitrone and vitamin E. Ann N Y Acad Sci 854:448–462. doi:10.1111/j.1749-6632.1998.tb09924.x

    Article  PubMed  CAS  Google Scholar 

  69. Edamatsu R, Mori A, Packer L (1995) The spin-trap N-tert-alpha-phenyl-butylnitrone prolongs the life span of the senescence accelerated mouse. Biochem Biophys Res Commun 211(3):847–849. doi:10.1006/bbrc.1995.1889

    Article  PubMed  CAS  Google Scholar 

  70. Forster MJ, Dubey A, Dawson KM, Stutts WA, Lal H, Sohal RS (1996) Age-related losses of cognitive function and motor skills in mice are associated with oxidative damage in the brain. Proc Natl Acad Sci USA 93:4765–4769. doi:10.1073/pnas.93.10.4765

    Article  PubMed  CAS  Google Scholar 

  71. Martinez M, Hernandez AI, Martinez N (2000) N-acetylcysteine delays age-associated memory impairment in mice: role in synaptic mitochondoria. Brain Res 855:100–106. doi:10.1016/S0006-8993(99)02349-5

    Article  PubMed  CAS  Google Scholar 

  72. Floyd RA (1991) Oxidative damage to behavior during aging. Science 254:1597. doi:10.1126/science.1684251

    Article  PubMed  CAS  Google Scholar 

  73. Smith CD, Carney JM, Starke-Reed PE, Oliver CN, Standtman ER, Floyd RA et al (1991) Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer’s disease. Proc Natl Acad Sci USA 88:10540–10543. doi:10.1073/pnas.88.23.10540

    Article  PubMed  CAS  Google Scholar 

  74. Nishimura H, Higuchi O, Tateshita K, Tomobe K, Okuma Y, Nomura Y (2006) Antioxidative activity and ameliorative effects of memory impairment of sulfur-containing compounds in Allium species. Biofactors 26(2):135–146

    Article  PubMed  CAS  Google Scholar 

  75. Bishop NA, Guarente L (2007) Two neurons mediate diet-restriction-induced longevity in C. elegans. Nature 447(7144):545–549. doi:10.1038/nature05904

    Article  PubMed  CAS  Google Scholar 

  76. Panowski SH, Wolff S, Aguilaniu H, Durieux J, Dillin A (2007) PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans. Nature 447(7144):550–555. doi:10.1038/nature05837

    Article  PubMed  CAS  Google Scholar 

  77. Pugh TD, Oberley TD, Weindruch R (1999) Dietary intervention at middle age: caloric restriction but not dehydroepiandrosterone sulfate increases lifespan and lifetime cancer incidence in mice. Cancer Res 59(7):1642–1648

    PubMed  CAS  Google Scholar 

  78. Fernandes G, Yunis EJ, Good RA (1976) Influence of diet on survival of mice. Proc Natl Acad Sci USA 73(4):1279–1283. doi:10.1073/pnas.73.4.1279

    Article  PubMed  CAS  Google Scholar 

  79. Stern JS, Gades MD, Wheeldon CM, Borchers AT (2001) Calorie restriction in obesity: prevention of kidney disease in rodents. J Nutr 131(3):913S–917S

    PubMed  CAS  Google Scholar 

  80. Jiang T, Liebman SE, Lucia MS, Phillips CL, Levi M (2005) Caloric restriction modulates renal expression of sterol regulatory element binding proteins, lipid accumulation, and age-related renal disease. J Am Soc Nephrol 16(8):2385–2394. doi:10.1681/ASN.2004080701

    Article  PubMed  CAS  Google Scholar 

  81. Varady KA, Hellerstein MK (2007) Alternate-day fasting and chronic disease prevention: a review of human and animal trials. Am J Clin Nutr 86(1):7–13

    PubMed  CAS  Google Scholar 

  82. Heilbronn LK, Ravussin E (2003) Calorie restriction and aging: review of the literature and implications for studies in humans. Am J Clin Nutr 78(3):361–369

    PubMed  CAS  Google Scholar 

  83. Wang J, Ho L, Qin W, Rocher AB, Seror I, Humala N et al (2005) Caloric restriction attenuates β-amyloid neuropathology in a mouse model of Alzheimer’s disease. FASEB J 19(6):659–661

    PubMed  Google Scholar 

  84. Merry BJ (2004) Oxidative stress and mitochondrial function with aging—the effects of calorie restriction. Aging Cell 3(1):7–12. doi:10.1046/j.1474-9728.2003.00074.x

    Article  PubMed  CAS  Google Scholar 

  85. Gredilla R, Barja G, López-Torres M (2001) Effect of short-term caloric restriction on H2O2 production and oxidative DNA damage in rat liver mitochondria and location of the free radical source. J Bioenerg Biomembr 33(4):279–287. doi:10.1023/A:1010603206190

    Article  PubMed  CAS  Google Scholar 

  86. Gredilla R, Sanz A, Lopez-Torres M, Barja G (2001) Caloric restriction decreases mitochondrial free radical generation at complex I and lowers oxidative damage to mitochondrial DNA in the rat heart. FASEB J 15(9):1589–1591

    PubMed  CAS  Google Scholar 

  87. Lambert AJ, Merry BJ (2004) Effect of caloric restriction on mitochondrial reactive oxygen species production and bioenergetics: reversal by insulin. Am J Physiol Regul Integr Comp Physiol 286(1):R71–R79. doi:10.1152/ajpregu.00341.2003

    PubMed  CAS  Google Scholar 

  88. Lopez-Torres M, Gredilla R, Sanz A, Barja G (2002) Influence of aging and long-term caloric restriction on oxygen radical generation and oxidative DNA damage in rat liver mitochondria. Free Radic Biol Med 32:882–889. doi:10.1016/S0891-5849(02)00773-6

    Article  PubMed  CAS  Google Scholar 

  89. Pamplona R, Portero-Otín M, Requena J, Gredilla R, Barja G (2002) Oxidative, glycoxidative and lipoxidative damage to rat heart mitochondrial proteins is lower after 4 months of caloric restriction than in age-matched controls. Mech Ageing Dev 123(11):1437–1446. doi:10.1016/S0047-6374(02)00076-3

    Article  PubMed  CAS  Google Scholar 

  90. Sanz A, Caro P, Ibañez J, Gómez J, Gredilla R, Barja G (2005) Dietary restriction at old age lowers mitochondrial oxygen radical production and leak at complex I and oxidative DNA damage in rat brain. J Bioenerg Biomembr 37(2):83–90. doi:10.1007/s10863-005-4131-0

    Article  PubMed  CAS  Google Scholar 

  91. Stuart JA, Karahalil B, Hogue BA, Souza-Pinto NC, Bohr VA (2004) Mitochondrial and nuclear DNA base excision repair are affected differently by caloric restriction. FASEB J 18(3):595–597

    PubMed  CAS  Google Scholar 

  92. Hyun DH, Emerson SS, Jo DG, Mattson MP, de Cabo R (2006) Calorie restriction up-regulates the plasma membrane redox system in brain cells and suppresses oxidative stress during aging. Proc Natl Acad Sci USA 103(52):19908–19912. doi:10.1073/pnas.0608008103

    Article  PubMed  CAS  Google Scholar 

  93. Choi JH, Kim D (2000) Effects of age and dietary restriction on lifespan and oxidative stress of SAMP8 mice with learning and memory impairments. J Nutr Health Aging 4(3):182–186

    PubMed  CAS  Google Scholar 

  94. Kim DW, Choi JH (2000) Effects of age and dietary restriction on animal model SAMP8 mice with learning and memory impairments. J Nutr Health Aging 4(4):233–238

    PubMed  CAS  Google Scholar 

  95. Higuchi K (1997) Genetic characterization of senescence-accelerated mouse (SAM). Exp Gerontol 32:129–138. doi:10.1016/S0531-5565(96)00060-5

    Article  PubMed  CAS  Google Scholar 

  96. Kitado H, Higuchi K, Takeda T (1994) Molecular genetic characterization of the senescence-accelerated mouse (SAM) strains. J Gerontol 49:B247–B254

    PubMed  CAS  Google Scholar 

  97. Xia C, Higuchi K, Shimizu M, Matsushita T, Kogishi K, Wang J et al (1999) Genetic typing of the senescence-accelerated mouse (SAM) strains with microsatellite markers. Mamm Genome 10(3):235–238. doi:10.1007/s003359900979

    Article  PubMed  CAS  Google Scholar 

  98. Isobe M, Tomobe K, Sawada M, Kondo A, Kurokawa N, Nomura Y (2004) Quantitative trait loci for age-related memory dysfunction in SAMP8 and JF1 mice. In: Nomura Y, Takeda T, Okuma Y (eds) The senescence-accelerated mouse (SAM): an animal model of senescence. Elsevier, Amsterdam, pp 29–34

    Google Scholar 

  99. Carter TA, Greenhall JA, Yoshida S, Fuchs S, Helton R, Swaroop A et al (2005) Mechanisms of aging in senescence-accelerated mice. Genome Biol 6(6):R48. doi:10.1186/gb-2005-6-6-r48

    Article  PubMed  Google Scholar 

  100. Salvador GA, López FM, Giusto NM (2002) Age-related changes in central nervous system phosphatidylserine decarboxylase activity. J Neurosci Res 70(3):283–289. doi:10.1002/jnr.10385

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuyuki Nomura.

Additional information

Special issue article in Honour of Dr. Akitane Mori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomobe, K., Nomura, Y. Neurochemistry, Neuropathology, and Heredity in SAMP8: A Mouse Model of Senescence. Neurochem Res 34, 660–669 (2009). https://doi.org/10.1007/s11064-009-9923-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-009-9923-x

Keywords

Navigation