Skip to main content
Log in

Single Cell Ganglioside Catabolism in Primary Cerebellar Neurons and Glia

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Cell-to-cell heterogeneity in ganglioside catabolism was determined by profiling fluorescent tetramethylrhodamine-labeled GM1 (TMR-GM1) breakdown in individual primary neurons and glia from the rat cerebellum. Cells isolated from 5 to 6 day old rat cerebella were cultured for 7 days, and then incubated for 14 h with TMR-GM1. Intact cells were recovered from cultures by mild proteolysis, paraformaldehyde fixed, and subjected to single cell analysis. Individual cells were captured in a capillary, lysed, and the released single-cell contents analyzed by capillary electrophoresis with quantitative laser-induced fluorescent detection of metabolites. Non-neuronal cells on average took up much more exogenous TMR-GM1 than neuronal cells, and catabolized it more extensively. After 14 h of incubation, non-neuronal cells retained only 14% of the TMR products as GM1 and GM2, compared to >50% for neurons. On average, non-neuronal cells contained 74% of TMR-labeled product as TMR-ceramide, compared to only 42% for neurons. Non-neuronal cells retained seven times as much TMR-GM3 (7%) compared to neuronal cells (1%). To confirm the observed single cell metabolomics, we lysed and compared TMR-GM1 catabolic profiles from mixed neuron/glial cell cultures and from cultures depleted of non-neuronal cells by treatment with the antimitotic agent cytosine arabinoside. The lysed culture catabolic profiles were consistent with the average profiles of single neurons and glia. We conclude that the ultrasensitive analytic methods described accurately reflect single cell ganglioside catabolism in different cell populations from the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yu RK, Tsai YT, Ariga T et al (2011) Structures, biosynthesis, and functions of gangliosides—an overview. J Oleo Sci 60:537–544

    Article  PubMed  CAS  Google Scholar 

  2. Sonnino S, Prinetti A (2010) Gangliosides as regulators of cell membrane organization and functions. Adv Exp Med Biol 688:165–184

    Article  PubMed  CAS  Google Scholar 

  3. Schnaar RL (2010) Brain gangliosides in axon-myelin stability and axon regeneration. FEBS Lett 584:1741–1747

    Article  PubMed  CAS  Google Scholar 

  4. Ledeen RW, Yu RK (1982) Gangliosides: structure, isolation, and analysis. Methods Enzymol 83:139–191

    Article  PubMed  CAS  Google Scholar 

  5. Todeschini AR, Hakomori SI (2008) Functional role of glycosphingolipids and gangliosides in control of cell adhesion, motility, and growth, through glycosynaptic microdomains. Biochim Biophys Acta 1780:421–433

    Article  Google Scholar 

  6. Lopez PH, Schnaar RL (2009) Gangliosides in cell recognition and membrane protein regulation. Curr Opin Struct Biol 19:549–557

    Article  PubMed  CAS  Google Scholar 

  7. Kolter T, Sandhoff K (1998) Glycosphingolipid degradation and animal models of GM2-gangliosidoses. J Inherit Metab Dis 21:548–563

    Article  PubMed  CAS  Google Scholar 

  8. Vitner EB, Platt FM, Futerman AH (2010) Common and uncommon pathogenic cascades in lysosomal storage diseases. J Biol Chem 285:20423–20427

    Article  PubMed  CAS  Google Scholar 

  9. van Echten G, Sandhoff K (1993) Ganglioside metabolism. Enzymology, topology, and regulation. J Biol Chem 268:5341–5344

    PubMed  Google Scholar 

  10. Prinetti A, Chigorno V, Prioni S et al (2001) Changes in the lipid turnover, composition, and organization, as sphingolipid-enriched membrane domains, in rat cerebellar granule cells developing in vitro. J Biol Chem 276:21136–21145

    Article  PubMed  CAS  Google Scholar 

  11. Hatten ME (1985) Neuronal regulation of astroglial morphology and proliferation in vitro. J Cell Biol 100:384–396

    Article  PubMed  CAS  Google Scholar 

  12. Dovichi NJ, Hu S (2003) Chemical cytometry. Curr Opin Chem Biol 7:603–608

    Article  PubMed  CAS  Google Scholar 

  13. Whitmore CD, Olsson U, Larsson EA et al (2007) Yoctomole analysis of ganglioside metabolism in PC12 cellular homogenates. Electrophoresis 28:3100–3104

    Article  PubMed  CAS  Google Scholar 

  14. Dada OO, Essaka DC, Hindsgaul O et al (2011) Nine orders of magnitude dynamic range: picomolar to millimolar concentration measurement in capillary electrophoresis with laser induced fluorescence detection employing cascaded avalanche photodiode photon counters. Anal Chem 83:2748–2753

    Article  PubMed  CAS  Google Scholar 

  15. Mehta NR, Lopez PH, Vyas AA et al (2007) Gangliosides and nogo receptors independently mediate myelin-associated glycoprotein inhibition of neurite outgrowth in different nerve cells. J Biol Chem 282:27875–27886

    Article  PubMed  CAS  Google Scholar 

  16. Chen Y, Stevens B, Chang J et al (2008) NS21: re-defined and modified supplement B27 for neuronal cultures. J Neurosci Methods 171:239–247

    Article  PubMed  CAS  Google Scholar 

  17. Larsson EA, Olsson U, Whitmore CD et al (2007) Synthesis of reference standards to enable single cell metabolomic studies of tetramethylrhodamine-labeled ganglioside GM1. Carbohydr Res 342:482–489

    Article  PubMed  CAS  Google Scholar 

  18. Ramsay LM, Dickerson JA, Dovichi NJ (2009) Attomole protein analysis by CIEF with LIF detection. Electrophoresis 30:297–302

    Article  PubMed  CAS  Google Scholar 

  19. Sobhani K, Michels DA, Dovichi NJ (2007) Sheath-flow cuvette for high-sensitivity laser-induced fluorescence detection in capillary electrophoresis. Appl Spectrosc 61:777–779

    Article  PubMed  CAS  Google Scholar 

  20. Whitmore CD, Essaka D, Dovichi NJ (2009) Six orders of magnitude dynamic range in capillary electrophoresis with ultrasensitive laser-induced fluorescence detection. Talanta 80:744–748

    Article  PubMed  CAS  Google Scholar 

  21. Pearce IA, Cambray-Deakin MA, Burgoyne RD (1987) Glutamate acting on NMDA receptors stimulates neurite outgrowth from cerebellar granule cells. FEBS Lett 223:143–147

    Article  PubMed  CAS  Google Scholar 

  22. Krylov SN, Starke DA, Arriaga EA et al (2000) Instrumentation for chemical cytometry. Anal Chem 72:872–877

    Article  PubMed  CAS  Google Scholar 

  23. Madsen MT, Nickles RJ (1986) A precise method for correcting count-rate losses in scintillation cameras. Med Phys 13:344–349

    Article  PubMed  CAS  Google Scholar 

  24. Akasako Y, Nara K, Nagai Y et al (2011) Inhibition of ganglioside synthesis reduces the neuronal survival activity of astrocytes. Neurosci Lett 488:199–203

    Article  PubMed  CAS  Google Scholar 

  25. Prinetti A, Chigorno V, Tettamanti G et al (2000) Sphingolipid-enriched membrane domains from rat cerebellar granule cells differentiated in culture. A compositional study. J Biol Chem 275:11658–11665

    Article  PubMed  CAS  Google Scholar 

  26. Schnaar RL, Fromholt SE, Gong Y et al (2002) Immunoglobulin G-class mouse monoclonal antibodies to major brain gangliosides. Anal Biochem 302:276–284

    Article  PubMed  CAS  Google Scholar 

  27. Bassi R, Sonnino S (1992) The role of the ganglioside lipid moiety in the process of ganglioside-cell interactions. Chem Phys Lipids 62:1–9

    Article  PubMed  CAS  Google Scholar 

  28. Chigorno V, Valsecchi M, Sonnino S et al (1990) Formation of tritium-labeled polysialylated gangliosides in the cytosol of rat cerebellar granule cells in culture following administration of [3H]GM1 ganglioside. FEBS Lett 277:164–166

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge funding from the National Institutes of Health (R01NS061767).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ronald L. Schnaar or Norman J. Dovichi.

Additional information

Special issue: In honor of Bob Leeden

David C. Essaka and Jillian Prendergast contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Essaka, D.C., Prendergast, J., Keithley, R.B. et al. Single Cell Ganglioside Catabolism in Primary Cerebellar Neurons and Glia. Neurochem Res 37, 1308–1314 (2012). https://doi.org/10.1007/s11064-012-0733-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0733-1

Keywords

Navigation