Skip to main content
Log in

The Cerebellum and Basal Ganglia are Interconnected

  • Review
  • Published:
Neuropsychology Review Aims and scope Submit manuscript

Abstract

The cerebellum and the basal ganglia are major subcortical nuclei that control multiple aspects of behavior largely through their interactions with the cerebral cortex. Discrete multisynaptic loops connect both the cerebellum and the basal ganglia with multiple areas of the cerebral cortex. Interactions between these loops have traditionally been thought to occur mainly at the level of the cerebral cortex. Here, we review a series of recent anatomical studies in nonhuman primates that challenge this perspective. We show that the anatomical substrate exists for substantial interactions between the cerebellum and the basal ganglia. Furthermore, we discuss how these pathways may provide a useful framework for understanding cerebellar contributions to the manifestation of two prototypical basal ganglia disorders, Parkinson’s disease and dystonia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Crus IIp:

posterior Crus II (a component of hemispheric lobule VII)

HVIIB:

hemispheric lobule VIIB

GPe:

external segment of the globus pallidus

GPi:

internal segment of the globus pallidus

STN:

subthalamic nucleus

VIM:

ventralis intermedius nucleus

References

  • Akkal, D., Dum, R. P., & Strick, P. L. (2007). Supplementary motor area and presupplementary motor area: targets of basal ganglia and cerebellar output. Journal of Neuroscience, 27(40), 10659–10673.

    Article  CAS  PubMed  Google Scholar 

  • Alexander, G. E., & Crutcher, M. D. (1990). Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends in Neurosciences, 13(7), 266–271.

    Article  CAS  PubMed  Google Scholar 

  • Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking the basal ganglia and cortex. Annual Review of Neuroscience, 9, 357–381.

    Article  CAS  PubMed  Google Scholar 

  • Allen, G. I., & Tsukahara, N. (1974). Cerebrocerebellar communication systems. Physiological Review, 54(4), 957–1006.

    CAS  Google Scholar 

  • Amaral, D. G., Schumann, C. M., & Nordahl, C. W. (2008). Neuroanatomy of autism. Trends in Neurosciences, 31(3), 137–145.

    Article  CAS  PubMed  Google Scholar 

  • Amtage, F., Henschel, K., Schelter, B., Vesper, J., Timmer, J., Lücking, C. H., et al. (2008). Tremor-correlated neuronal activity in the subthalamic nucleus of Parkinsonian patients. Neuroscience Letters, 442(3), 195–199.

    Article  CAS  PubMed  Google Scholar 

  • Andreasen, N. C., & Pierson, R. (2008). The role of the cerebellum in schizophrenia. Biological Psychiatry, 64(2), 81–88.

    Article  PubMed  Google Scholar 

  • Andreasen, N. C., Paradiso, S., & O’Leary, D. S. (1998). “Cognitive dysmetria” as an integrative theory of schizophrenia: a dysfunction in cortical-subcortical-cerebellar circuitry? Schizophrenia Bulletin, 24(2), 203–218.

    CAS  PubMed  Google Scholar 

  • Argyelan, M., Carbon, M., Niethammer, M., Ulug, A. M., Voss, H. U., Bressman, S. B., et al. (2009). Cerebellothalamocortical connectivity regulates penetrance in dystonia. Journal of Neuroscience, 29(31), 9740–9747.

    Article  CAS  PubMed  Google Scholar 

  • Bergman, H., Wichmann, T., Karmon, B., & DeLong, M. R. (1994). The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. Journal of Neurophysiology, 72(2), 507–520.

    CAS  PubMed  Google Scholar 

  • Bhatia, K. P., & Marsden, C. D. (1994). The behavioural and motor consequences of focal lesions of the basal ganglia in man. Brain, 117(4), 859–876.

    Article  PubMed  Google Scholar 

  • Bostan, A. C., Dum, R. P., & Strick, P. L. (2010). The basal ganglia communicate with the cerebellum. Proceedings of the National Academy of Sciences of the United States of America, 107(18), 8452–8456.

    Article  CAS  PubMed  Google Scholar 

  • Brakefield, X. O., Blood, A. J., Li, Y., Hallett, M., Hanson, P. I., & Standaert, D. G. (2008). The pathophysiological basis of dystonias. Nature Reviews Neuroscience, 9(3), 222–234.

    Article  CAS  Google Scholar 

  • Brooks, V. B., & Thach, W. T. (1981). Cerebellar control of posture and movement. In V. B. Brooks (ed) Handbook of physiology, Section I. The nervous system, Vol. 2, Motor Control, Part II (pp. 877–946). Bethesda: Am. Physiol. Soc.

  • Campbell, D. B., & Hess, E. J. (1998). Cerebellar circuitry is activated during convulsive episodes in the tottering (tg/tg) mutant mouse. Neuroscience, 85(3), 773–783.

    Article  CAS  PubMed  Google Scholar 

  • Campbell, D. B., North, J. B., & Hess, E. J. (1999). Tottering mouse motor dysfunction is abolished on the Purkinje cell degeneration (pcd) mutant background. Experimental Neurology, 160(1), 268–278.

    Article  CAS  PubMed  Google Scholar 

  • Carbon, M., & Eidelberg, D. (2009). Abnormal structure-function relationships in hereditary dystonia. Neuroscience, 164(1), 220–229.

    Article  CAS  PubMed  Google Scholar 

  • Carbon, M., Ghilardi, M. F., Argyelan, M., Dhawan, V., Bressmann, S. B., & Eidelberg, D. (2008). Increased cerebellar activation during sequence learning in DYT1 carriers: an equiperformance study. Brain, 131(1), 146–154.

    Article  PubMed  Google Scholar 

  • Carbon, M., Argyelan, M., & Eidelberg, D. (2010). Functional imaging in hereditary dystonia. European Journal of Neuroscience, 17(Suppl. 1), 58–64.

    Google Scholar 

  • Catalan, M., Ishii, K., Honda, M., Samii, A., & Hallett, M. (1999). A PET study of sequential finger movements of varying length in patients with Parkinson’s disease. Brain, 122(3), 483–495.

    Article  PubMed  Google Scholar 

  • Chen, G., Popa, L. S., Wang, X., Gao, W., Barnes, J., Hendrix, C. M., et al. (2009). Low-frequency oscillations in the cerebellar cortex of the tottering mouse. Journal of Neurophysiology, 101(1), 234–245.

    Article  PubMed  Google Scholar 

  • Clower, D. M., West, R. A., Lynch, J. C., & Strick, P. L. (2001). The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. Journal of Neuroscience, 21(16), 6283–6291.

    CAS  PubMed  Google Scholar 

  • Clower, D. M., Dum, R. P., & Strick, P. L. (2005). Basal ganglia and cerebellar inputs to “AIP”. Cerebral Cortex, 15(7), 913–920.

    Article  PubMed  Google Scholar 

  • Doya, K. (2000). Complementary roles of basal ganglia and cerebellum in learning and motor control. Current Opinion in Neurobiology, 10(6), 732–739.

    Article  CAS  PubMed  Google Scholar 

  • Dum, R. P., & Strick, P. L. (2003). An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. Journal of Neurophysiology, 89(1), 634–639.

    Article  PubMed  Google Scholar 

  • Eidelberg, D. (1998). Functional brain networks in movement disorders. Current Opinion in Neurology, 11(4), 319–326.

    Article  CAS  PubMed  Google Scholar 

  • Fahn, S., Bressman, S. B., & Marsden, C. D. (1998). Classification of dystonia. Advances in Neurology, 78, 1–10.

    CAS  PubMed  Google Scholar 

  • Fishman, P. S. (2008). Paradoxical aspects of parkinsonian tremor. Movement Disorders, 23(2), 168–173.

    Article  PubMed  Google Scholar 

  • François, C., Grabli, D., McCairn, K., Jan, C., Karachi, C., Hirsch, E.-C., et al. (2004). Behavioural disorders induced by external globus pallidus dysfunction in primates II. Anatomical study. Brain, 127, 2055–2070.

    Article  PubMed  Google Scholar 

  • Geday, J., Østergaard, K., Johnsen, E., & Gjedde, A. (2009). STN-stimulation in Parkinson’s disease restores striatal inhibition of thalamocortical projection. Human Brain Mapping, 30(1), 112–121.

    Article  PubMed  Google Scholar 

  • Geyer, H. L., & Bressman, S. B. (2006). The diagnosis of dystonia. Lancet, 5(9), 780–790.

    Article  Google Scholar 

  • Ghaemi, M., Raethjen, J., Hilker, R., Rudolf, J., Sobesky, J., Deuschl, G., et al. (2002). Monosymptomatic resting tremor and Parkinson’s disease: a multitracer positron emission tomographic study. Movement Disorders, 17(4), 782–788.

    Article  PubMed  Google Scholar 

  • Ghilardi, M. F., Carbon, M., Silverstri, G., Dhawan, V., Tagliati, M., Bressman, S., et al. (2003). Impaired sequence learning in carriers of the DYT1 dystonia mutation. Annals of Neurology, 54(1), 102–109.

    Article  PubMed  Google Scholar 

  • Grabli, D., McCairn, K., Hirsch, E. C., Agid, Y., Féger, J., François, C., et al. (2004). Behavioural disorders induced by external globus pallidus dysfunction in primates: I. Behavioural Study. Brain, 127, 2039–2054.

    Article  PubMed  Google Scholar 

  • Grafton, S. T., Turner, R. S., Desmurget, M., Bakay, R., Delong, M., Vitek, J., et al. (2006). Normalizing motor-related brain activity: subthalamic nucleus stimulation in Parkinson disease. Neurology, 66(8), 1192–1199.

    Article  CAS  PubMed  Google Scholar 

  • Graybiel, A. M. (2005). The basal ganglia: learning new tricks and loving it. Current Opinion in Neurobiology, 15(6), 638–644.

    Article  CAS  PubMed  Google Scholar 

  • Guehl, D., Burbaud, P., Boraud, T., & Bioulac, B. (2000). Bicuculline injections into the rostral and caudal motor thalamus of the monkey induce different types of dystonia. European Journal of Neuroscience, 12(3), 1033–1037.

    Article  CAS  PubMed  Google Scholar 

  • Guehl, D., Pessiglione, M., François, C., Yelnik, J., Hirsch, E., Féger, J., et al. (2003). Tremor-related activity of neurons in the “motor” thalamus: changes in firing rate and pattern in the MPTP vervet model of parkinsonism. The European Journal of Neuroscience, 17(11), 2388–2400.

    Article  CAS  PubMed  Google Scholar 

  • Guehl, D., Cuny, E., Ghorayeb, I., Michelet, T., Bioulac, B., & Burbaud, P. (2009). Primate models of dystonia. Progress in Neurobiology, 87(2), 118–131.

    Article  CAS  PubMed  Google Scholar 

  • Hamani, C., Saint-Cyr, J. A., Fraser, J., Kaplitt, M., & Lozano, A. M. (2004). The subthalamic nucleus in the context of movement disorders. Brain, 127(1), 4–20.

    Article  PubMed  Google Scholar 

  • Hilker, R., Voges, J., Weisenbach, S., Kalbe, E., Burghaus, L., Ghaemi, M., et al. (2004). Subthalamic nucleus stimulation restores glucose metabolism in associative and limbic cortices and in cerebellum: evidence from a FDG-PET study in advanced Parkinson’s disease. Journal of Cerebral Blood Flow & Metabolism, 24(1), 7–16.

    Article  CAS  Google Scholar 

  • Hoover, J. E., & Strick, P. L. (1999). The organization of cerebellar and basal ganglia outputs to primary motor cortex as revealed by retrograde transneuronal transport of herpes simplex virus type 1. Journal of Neuroscience, 19(4), 1446–1463.

    CAS  PubMed  Google Scholar 

  • Hoshi, E., Tremblay, L., Féger, J., Carras, P. L., & Strick, P. L. (2005). The cerebellum communicates with the basal ganglia. Nature Neuroscience, 8(11), 1491–1493.

    Article  CAS  PubMed  Google Scholar 

  • Hurtado, J. M., Gray, C. M., Tamas, L. B., & Sigvardt, K. A. (1999). Dynamics of tremor-related oscillations in the human globus pallidus: a single case study. Proceedings of the National Academy of Sciences of the United States of America, 96(4), 1674–1679.

    Article  CAS  PubMed  Google Scholar 

  • Hutchison, W. D., Allan, R. J., Opitz, H., Levy, R., Dostrovsky, J. O., Lang, A. E., et al. (1998). Neurophysiological identification of the subthalamic nucleus in surgery for Parkinson’s disease. Annals of Neurology, 44(4), 622–628.

    Article  CAS  PubMed  Google Scholar 

  • Inase, M., Tokuno, H., Nambu, A., Akazawa, T., & Takada, M. (1999). Corticostriatal and corticosubthalamic input zones from the presupplementary motor area in the macaque monkey: comparison with the input zones from the supplementary motor area. Brain Research, 833(2), 191–201.

    Article  CAS  PubMed  Google Scholar 

  • Joel, D., & Weiner, I. (1997). The connections of the primate subthalamic nucleus: indirect pathways and the open-interconnected scheme of basal ganglia-thalamocortical circuitry. Brain Research Brain Research Reviews, 23(1–2), 62–78.

    Article  CAS  PubMed  Google Scholar 

  • Kelly, R. M., & Strick, P. L. (2000). Rabies as a transneuronal tracer of circuits in the central nervous system. Journal of Neuroscience Methods, 103(1), 63–71.

    Article  CAS  PubMed  Google Scholar 

  • Kelly, R. M., & Strick, P. L. (2003). Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. Journal of Neuroscience, 23(23), 8432–8444.

    CAS  PubMed  Google Scholar 

  • Kelly, R. M., & Strick, P. L. (2004). Macro-architecture of basal ganglia loops with the cerebral cortex: use of rabies virus to reveal multisynaptic circuits. Progress in Brain Research, 143, 449–459.

    Article  PubMed  Google Scholar 

  • Kemp, J. M., & Powell, T. P. S. (1971). The connexions of the striatum and globus pallidus: synthesis and speculation. Philosophical Transactions of the Royal Society of London, 262(845), 441–457.

    Article  CAS  PubMed  Google Scholar 

  • Krack, P., Fraix, V., Mendes, A., Benabid, A. L., & Pollak, P. (2002). Postoperative management of subthalamic nucleus stimulation for Parkinson’s disease. Movement Disorders, 17(Suppl. 3), S188–S197.

    Article  PubMed  Google Scholar 

  • Krain, A. L., & Castellanos, F. X. (2006). Brain development and ADHD. Clinical Psychology Review, 26(4), 433–444.

    Article  PubMed  Google Scholar 

  • LeDoux, M. S., & Brady, K. A. (2003). Secondary cervical dystonia associated with structural lesions of the central nervous system. Movement Disorders, 18(1), 60–69.

    Article  PubMed  Google Scholar 

  • Leiner, H. C., Leiner, A. L., & Dow, R. S. (1986). Does the cerebellum contribute to mental skills? Behavioral Neuroscience, 100(4), 443–454.

    Article  CAS  PubMed  Google Scholar 

  • Leiner, H. C., Leiner, A. L., & Dow, R. S. (1989). Reappraising the cerebellum: what does the hindbrain contribute to the forebrain? Behavioral Neuroscience, 103(5), 998–1008.

    Article  CAS  PubMed  Google Scholar 

  • Leiner, H. C., Leiner, A. L., & Dow, R. S. (1991). The human cerebro-cerebellar system: its computing, cognitive, and language skills. Behavioural Brain Research, 44(2), 113–128.

    Article  CAS  PubMed  Google Scholar 

  • Leiner, H. C., Leiner, A. L., & Dow, R. S. (1993). Cognitive and language functions of the human cerebellum. Trends in Neurosciences, 16(11), 444–447.

    Article  CAS  PubMed  Google Scholar 

  • Lenz, F. A., Tasker, R. R., Kwan, H. C., Schnider, S., Kwong, R., Murayama, Y., et al. (1988). Single unit analysis of the human ventral thalamic nuclear group: correlation of thalamic “tremor cells” with the 3–6 Hz component of parkinsonian tremor. The Journal of Neuroscience, 8(3), 754–764.

    CAS  PubMed  Google Scholar 

  • Lenz, F. A., Kwan, H. C., Martin, R. R., Tasker, R. R., Dostrovsky, J. O., & Lenz, Y. E. (1994). Single unit analysis of the human ventral thalamic nuclear group. Tremor-related activity in functionally identified cells. Brain, 117(3), 531–543.

    Article  PubMed  Google Scholar 

  • Limousin-Dowsey, P., Pollak, P., Van Blercom, N., Krack, P., Benazzouz, A., & Benabid, A. (1999). Thalamic, subthalamic nucleus and internal pallidum stimulation in Parkinson’s disease. Journal of Neurology, 246(Suppl. 2), II42–II45.

    Article  PubMed  Google Scholar 

  • Lynch, J. C., Hoover, J. E., & Strick, P. L. (1994). Input to the primate frontal eye field from the substantia nigra, superior colliculus, and dentate nucleus demonstrated by transneuronal transport. Experimental Brain Research, 100(1), 181–186.

    Article  CAS  Google Scholar 

  • Macia, F., Escola, L., Guehl, D., Michelet, T., Bioulac, B., & Burbaud, P. (2002). Neuronal activity in the monkey motor thalamus during bicuculline-induced dystonia. European Journal of Neuroscience, 15(8), 1353–1362.

    Article  CAS  PubMed  Google Scholar 

  • Magarinos-Ascone, C. M., Figueiras-Mendez, R., Riva-Meana, C., & Córdoba-Fernández, A. (2000). Subthalamic neuron activity related to tremor and movement in Parkinson’s disease. European Journal of Neuroscience, 12(7), 2597–2607.

    Article  CAS  PubMed  Google Scholar 

  • Magnin, M., Morel, A., & Jeanmonod, D. (2000). Single-unit analysis of the pallidum, thalamus and subthalamic nucleus in parkinsonian patients. Neuroscience, 96(3), 549–564.

    Article  CAS  PubMed  Google Scholar 

  • Middleton, F. A., & Strick, P. L. (1994). Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science, 266(5184), 458–461.

    Article  CAS  PubMed  Google Scholar 

  • Middleton, F. A., & Strick, P. L. (1996). The temporal lobe is a target of output from the basal ganglia. Proceedings of the National Academy of Sciences of the United States of America, 93(16), 8683–8687.

    Article  CAS  PubMed  Google Scholar 

  • Middleton, F. A., & Strick, P. L. (2000). Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Research Brain Research Reviews, 31(2–3), 236–250.

    Article  CAS  PubMed  Google Scholar 

  • Middleton, F. A., & Strick, P. L. (2001). Cerebellar projections to the prefrontal cortex of the primate. Journal of Neuroscience, 21(2), 700–712.

    CAS  PubMed  Google Scholar 

  • Middleton, F. A., & Strick, P. L. (2002). Basal-ganglia “projections” to the prefrontal cortex of the primate. Cerebral Cortex, 12(9), 926–935.

    Article  PubMed  Google Scholar 

  • Monakow, K. H., Akert, K., & Künzle, H. (1978). Projections of the precentral motor cortex and other cortical areas of the frontal lobe to the subthalamic nucleus in the monkey. Experimental Brain Research, 33(3–4), 395–403.

    CAS  Google Scholar 

  • Nambu, A., Takada, M., Inase, M., & Tokuno, H. (1996). Dual somatotopical representations in the primate subthalamic nucleus: evidence for ordered but reversed body-map transformations from the primary motor cortex and the supplementary motor area. Journal of Neuroscience, 16(8), 2671–2683.

    CAS  PubMed  Google Scholar 

  • Nambu, A., Tokuno, H., Inase, M., & Takada, M. (1997). Corticosubthalamic input zones from forelimb representations of the dorsal and ventral divisions of the premotor cortex in the macaque monkey: comparison with the input zones from the primary motor cortex and supplementary motor area. Neuroscience Letters, 239(1), 13–16.

    Article  CAS  PubMed  Google Scholar 

  • Narabayashi, H., Maeda, T., & Yokochi, F. (1987). Long-term follow-up study of nucleus ventralis intermedius and ventrolateralis thalamotomy using a microelectrode technique in parkinsonism. Applied Neurophysiology, 50(1–6), 330–337.

    CAS  PubMed  Google Scholar 

  • Neychev, V. K., Fan, X., Mitev, V. I., Hess, E. J., & Jinnah, H. A. (2008). The basal ganglia and cerebellum interact in the expression of dystonic movement. Brain, 131(9), 2499–2509.

    Article  PubMed  Google Scholar 

  • Ohye, C., Saito, U., Fukamachi, A., & Narabayashi, H. (1974). An analysis of the spontaneous rhythmic and non-rhythmic burst discharges in the human thalamus. Journal of the Neurological Sciences, 22(2), 245–259.

    Article  CAS  PubMed  Google Scholar 

  • Parent, A., & Hazrati, L. N. (1995a). Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Research Brain Research Reviews, 20(1), 91–127.

    Article  CAS  PubMed  Google Scholar 

  • Parent, A., & Hazrati, L. N. (1995b). Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Research Brain Research Reviews, 20(1), 128–154.

    Article  CAS  PubMed  Google Scholar 

  • Payoux, P., Remy, P., Damier, P., Miloudi, M., Loubinoux, I., Pidoux, B., et al. (2004). Subthalamic nucleus stimulation reduces abnormal motor cortical overactivity in Parkinson disease. Archives of Neurology, 61(8), 1307–1313.

    Article  PubMed  Google Scholar 

  • Percheron, G., François, C., Talbi, B., Yelnik, J., & Fénelon, G. (1996). The primate motor thalamus. Brain Research Brain Research Reviews, 22(2), 93–181.

    Article  CAS  PubMed  Google Scholar 

  • Pimenta, A. F., Strick, P. L., & Levitt, P. (2001). Novel proteoglycan epitope expressed in functionally discrete patterns in primate cortical and subcortical regions. Journal of Comparative Neurology, 430(3), 369–388.

    Article  CAS  PubMed  Google Scholar 

  • Pizoli, C. E., Jinnah, H. A., Billingsley, M. L., & Hess, J. E. (2002). Abnormal cerebellar signaling induces dystonia in mice. Journal of Neuroscience, 22(17), 7825–7833.

    CAS  PubMed  Google Scholar 

  • Prevosto, V., Graf, W., & Ugolini, G. (2010). Cerebellar inputs to intraparietal cortex areas LIP and MIP: functional frameworks for adaptive control of eye movements, reaching, and arm/eye/head movement coordination. Cerebral Cortex, 20(1), 214–228.

    Article  PubMed  Google Scholar 

  • Rascol, O., Sabatini, U., Fabre, N., Brefel, C., Loubinoux, I., Celsis, P., et al. (1997). The ipsilateral cerebellar hemisphere is overactive during hand movements in akinetic parkinsonian patients. Brain, 120(1), 103–110.

    Article  PubMed  Google Scholar 

  • Rodriguez-Oroz, M. C., Rodriguez, M., Guridi, J., Mewes, K., Chockkman, V., Vitek, J., et al. (2001). The subthalamic nucleus in Parkinson’s disease: somatotopic organization and physiological characteristics. Brain, 124(9), 1777–1790.

    Article  CAS  PubMed  Google Scholar 

  • Rouaud, T., Lardeux, S., Panayotis, N., Paleressompoulle, D., Cador, M., & Baunez, C. (2010). Reducing the desire for cocaine with subthalamic nucleus deep brain stimulation. Proceedings of the National Academy of Sciences of the United States of America, 107(3), 1196–1200.

    Article  CAS  PubMed  Google Scholar 

  • Sakai, S. T., Inase, M., & Tanji, J. (1996). Comparison of cerebellothalamic and pallidothalamic projections in the monkey (Macaca fuscata): a double anterograde labeling study. Journal of Comparative Neurology, 368(2), 215–228.

    Article  CAS  PubMed  Google Scholar 

  • Schrock, L. E., Ostrem, J. L., Turner, R. S., Shimamoto, S. A., & Starr, P. A. (2009). The subthalamic nucleus in primary dystonia: single-unit discharge characteristics. Journal of Neurophysiology, 102(6), 3740–3752.

    Article  PubMed  Google Scholar 

  • Simpson, E. H., Kellendonk, C., & Kandel, E. (2010). A possible role for the striatum in the pathogenesis of the cognitive symptons of schizophrenia. Neuron, 65(5), 585–596.

    Article  CAS  PubMed  Google Scholar 

  • Stanton, G. B., Goldberg, M. E., & Bruce, C. J. (1988). Frontal eye field efferents in the macaque monkey: I. Subcortical pathways and topography of striatal and thalamic fields. Journal of Comparative Neurology, 271(4), 473–492.

    Article  CAS  PubMed  Google Scholar 

  • Steigerwald, F., Pötter, M., Herzog, J., Pinsker, M., Kopper, F., Mehdorn, H., et al. (2008). Neuronal activity of the human subthalamic nucleus in the parkinsonian and nonparkinsonian state. Journal of Neurophysiology, 100(5), 2515–2524.

    Article  CAS  PubMed  Google Scholar 

  • Strick, P. L., & Card, J. P. (1992). Transneuronal mapping of neural circuits with alpha herpesviruses. In J. P. Bolam (Ed.), Experimental neuroanatomy: a practical approach (pp. 81–101). Oxford: Oxford University Press.

    Google Scholar 

  • Strick, P. L., Dum, R. P., & Fiez, J. A. (2009). Cerebellum and nonmotor function. The Annual Review of Neuroscience, 32, 413–434.

    Article  CAS  Google Scholar 

  • Temel, Y., & Visser-Vandewalle, V. (2004). Surgery in Tourette syndrome. Movement Disorders, 19(1), 3–14.

    Article  PubMed  Google Scholar 

  • Theodosopoulos, P. V., Marks, W. J., Christine, C., & Starr, P. A. (2003). Locations of movement-related cells in the human subthalamic nucleus in Parkinson’s disease. Movement Disorders, 18(7), 791–798.

    Article  PubMed  Google Scholar 

  • Tobe, R. H., Bansal, R., Xu, D., Hao, X., Liu, J., Sanchez, J., et al. (2010). Cerebellar morphology in Tourette syndrome and obsessive-compulsive disorder. Annals of Neurology, 67(4), 479–487.

    PubMed  Google Scholar 

  • Trost, M., Carbon, M., Edwards, C., Ma, Y., Raymond, D., Mentis, M. J., et al. (2002). Primary dystonia: is abnormal functional brain architecture linked to genotype? Annals of Neurology, 52(6), 853–856.

    Article  PubMed  Google Scholar 

  • Trost, M., Su, S., Su, P., Yen, R.-F., Tseng, H.-M., Barnes, A., et al. (2006). Network modulation by the subthalamic nucleus in the treatment of Parkinson’s disease. NeuroImage, 31(1), 301–307.

    Article  PubMed  Google Scholar 

  • Turner, R. S., Grafton, S. T., McIntosh, A. R., DeLong, M. R., & Hoffman, J. M. (2003). The functional anatomy of parkinsonian bradykinesia. NeuroImage, 19(1), 163–179.

    PubMed  Google Scholar 

  • Ugolini, G. (1995). Specificity of rabies virus as a transneuronal tracer of motor networks: transfer from hypoglossal motoneurons to connected second-order and higher order central nervous system cell groups. Journal of Comparative Neurology, 356(3), 457–480.

    Article  CAS  PubMed  Google Scholar 

  • Wichmann, T., & DeLong, M. R. (2003). Pathophysiology of Parkinson’s disease: the MPTP primate model of the human disorder. Annals of the New York Academy of Sciences, 991, 199–213.

    Article  CAS  PubMed  Google Scholar 

  • Wichmann, T., Bergman, H., & DeLong, M. R. (1994). The primate subthalamic nucleus. I. Functional properties in intact animals. Journal of Neurophysiology, 72(2), 494–506.

    CAS  PubMed  Google Scholar 

  • Wu, T., & Hallett, M. (2005). A functional MRI study of automatic movements in patients with Parkinson’s disease. Brain, 128(10), 2250–2259.

    Article  PubMed  Google Scholar 

  • Yu, H., Sternad, D., Corcos, D. M., & Vaillancourt, D. E. (2007). Role of hyperactive cerebellum and motor cortex in Parkinson’s disease. NeuroImage, 35(1), 222–233.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. M. Schnell (Thomas Jefferson University, Philadelphia, PA) for supplying rabies virus strain N2c and Dr. A. Wandeler (Animal Disease Research Institute, Nepean, ON, Canada) for supplying antibodies to rabies. We thank M. Page and M. Semcheski for developing computer programs, and M. O’Malley, M. Watach, D. Sipula and P. Carras for their expert technical assistance. This work was supported in part by funds from the Office of Research and Development, Medical Research Service, Department of Veterans Affairs, National Institute of Health Grants R01 NS24328 (PLS), R01 MH56661 (PLS), P40 RR018604 (PLS), and Natural Sciences and Engineering Research Council of Canada Postgraduate Scholarship 358419 (ACB). The contents do not represent the views of the Department of Veterans Affairs or the United States Government.

Disclosure

The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreea C. Bostan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bostan, A.C., Strick, P.L. The Cerebellum and Basal Ganglia are Interconnected. Neuropsychol Rev 20, 261–270 (2010). https://doi.org/10.1007/s11065-010-9143-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11065-010-9143-9

Keywords

Navigation