Skip to main content
Log in

Differential activation of extracellular signal-regulated kinase 1 and a related complex in neuronal nuclei

  • Published:
Brain Cell Biology

Abstract

The extracellular signal-regulated kinases 1 and 2 (ERKs 1/2) are known to participate in regulating transcription in response to moderate depolarization, such as synaptic stimulation, but how the same active enzyme can differentially regulate distinct transcriptional programs induced with abnormal depolarization (high potassium) is unknown. We hypothesized that ERK1 or 2 accomplishes this differential nuclear response through close association with other proteins in stable complexes. In support of this hypothesis, we have found that immunoreactivity for an apparent high molecular weight complex containing phospho-ERK1 increased in response to synaptic stimulation, but decreased in response to high potassium; p-ERK immunoreactivity at 44/42 kDa increased in both cases. Evidence supporting the conclusion that the band of interest contained ERK1 in a complex, as opposed to it being an unrelated protein crossreacting with antibodies against p-ERK, is that ERK1 (p44 MAPK) and 14-3-3 protein were electroeluted from the 160-kDa band cut from a gel. We also found the nuclear complexes to be exceptionally durable, suggesting a role for the crosslinking enzyme, transglutaminase, in its stabilization. In addition, we found other components of the ERK pathway, including MEK, ERK2, p90RSK, and Elk-1, migrating at higher-than-expected weights in brain nuclei. These results describe a novel stable complex of ERK1 in neuronal nuclei that responds differentially to synaptic and depolarizing stimulation, and thus may be capable of mediating gene transcription in a way distinct from the monomeric protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adachi, M., Fukuda, M., Nishida, E. (2000). Nuclear export of MAP kinase (ERK) involves a MAP kinase kinase (MEK)-dependent active transport mechanism. J. Cell Biol. 148, 849–856

    Article  PubMed  CAS  Google Scholar 

  • Adams, J. P., Dudek, S. M. (2005). Late-phase long-term potentiation: Getting to the nucleus. Nat. Rev. Neurosci. 6, 737–743

    Article  PubMed  CAS  Google Scholar 

  • Bading, H., Greenberg, M. E. (1991). Stimulation of protein tyrosine phosphorylation by NMDA receptor activation. Science 253, 912–914

    Article  PubMed  CAS  Google Scholar 

  • Baron, C., Benes, C., Tan, H. V., Fagard, R., Roisin, M.-P. (1996). Potassium chloride pulse enhances mitogen-activated protein kinase activity in rat hippocampal slices. J. Neurochem. 66, 1005–1010

    Article  PubMed  CAS  Google Scholar 

  • Bito, H., Deisseroth, K., Tsien, R. W. (1996). CREB phosphorylation and dephosphorylation: A Ca2(+)- and stimulus duration-dependent switch for hippocampal gene expression. Cell 87, 1203–1214

    Article  PubMed  CAS  Google Scholar 

  • Blum, S., Moore, A. N., Adams, F., Dash, P. K. (1999). A mitogen-activated protein kinase cascade in the CA1/CA2 subfield of the dorsal hippocampus is essential for long-term spatial memory. J. Neurosci. 19, 3535–3544

    PubMed  CAS  Google Scholar 

  • Brewer, G. J., Torricelli, J. R., Evege, E. K., Price, P. J. (1993). Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35, 567–576

    Article  PubMed  CAS  Google Scholar 

  • Case, A., Stein, R. L. (2003). Kinetic analysis of the action of tissue transglutaminase on peptide and protein substrates. Biochemistry 42, 9466–9481

    Article  PubMed  CAS  Google Scholar 

  • Chen, R.-H., Sarnecki, C., Blenis, J. (1992). Nuclear localization and regulation of ERK- and RSK-encoded protein kinases. Mol. Cell Biol. 12, 915–927

    PubMed  CAS  Google Scholar 

  • Choudhuri, R., Cui, L., Yong, C., Bowyer, S., Klein, R. M., Welch, K. M., Berman, N. E. (2002). Cortical spreading depression and gene regulation: Relevance to migraine. Ann. Neurol. 51, 499–506

    Article  PubMed  CAS  Google Scholar 

  • Davare, M. A., Saneyoshi, T., Guire, E. S., Nygaard, S. C., Soderling, T. R. (2004). Inhibition of calcium/calmodulin-dependent protein kinase kinase by protein 14-3-3. J. Biol. Chem. 279, 52191–52199

    Article  PubMed  CAS  Google Scholar 

  • Dudek, S. M., Fields, R. D. (2001). Mitogen-activated protein kinase/extracellular signal-regulated kinase activation in somatodendritic compartments: Roles of action potentials, frequency, and mode of calcium entry. J. Neurosci. 21, RC122

    PubMed  CAS  Google Scholar 

  • Edmunds, J. W., Mahadevan, L. C. (2004). MAP kinases as structural adaptors and enzymatic activators in transcriptional complexes. J. Cell Sci. 117, 3715–3723

    Article  PubMed  CAS  Google Scholar 

  • English, J. D., Sweatt, J. D. (1996). Activation of p42 mitogen-activated protein kinase in hippocampal long term potentiation. J. Biol. Chem. 271, 24329–24332

    Article  PubMed  CAS  Google Scholar 

  • Ferrell, J. E. J. (2000). What do scaffold proteins really do? Sci. STKE 2000, PE1

  • Freed, E., Symons, M., Macdonald, S. G., McCormick, F., Ruggieri, R. (1994). Binding of 14-3-3 proteins to the protein kinase raf and effects on its activation. Science 265, 1713–1716

    Article  PubMed  CAS  Google Scholar 

  • Fukuda, M., Gotoh, I., Gotoh, Y., Nishida, E. (1996). Cytoplasmic localization of MAP kinase kinase directed by its N-terminal, leucine-rich short amino acid sequence, which acts as a nuclear export sequence. J. Biol. Chem. 271, 20024–20028

    Article  PubMed  CAS  Google Scholar 

  • Grootjans, J. J., Groenen, P. J., de Jong, W. W. (1995). Substrate requirements for transglutaminases. Influence of the amino acid residue preceding the amine donor lysine in a native protein. J. Biol. Chem. 270, 22855–22858

    Article  PubMed  CAS  Google Scholar 

  • Guzowski, J. F., McNaughton, B. L., Barnes, C. A., Worley, P. F. (1999). Environment-specific expression of the immediate-early gene arc in hippocampal neuronal ensembles. Nat. Neurosci. 2, 1120–1124

    Article  PubMed  CAS  Google Scholar 

  • Hardingham, G. E., Arnold, F. J. L., Bading, H. (2001). Nuclear calcium signaling controls CREB-mediated gene expression triggered by synaptic activity. Nat. Neurosci. 4, 261–267

    Article  PubMed  CAS  Google Scholar 

  • Horgan, A. M., Stork, P. J. (2003). Examining the mechanism of ERK nuclear translocation using green fluorescent protein. Exp. Cell Res. 285, 208–220

    Article  PubMed  CAS  Google Scholar 

  • Impey, S., Obrietan, K., Wong, S. T., Poser, S., Yano, S., Wayman, G., Deloulme, J. C., Chan, G., Storm, D. R. (1998). Cross talk between ERK and PKA is required for Ca2+ stimulation of CREB-dependent transcription and ERK nuclear translocation. Neuron 21, 869–883

    Article  PubMed  CAS  Google Scholar 

  • Irie, K., Gotoh, Y., Yashar, B. M., Errede, B., Nishida, E., Matsumoto, K. (1994). Stimulatory effects of yeast and mammalian 14-3-3 proteins on the Raf protein kinase. Science 265, 1716–1719

    Article  PubMed  CAS  Google Scholar 

  • Johnson, G. V., Cox, T. M., Lockhart, J. P., Zinnerman, M. D., Miller, M. L., Powers, R. E. (1997). Transglutaminase activity is increased in Alzheimer’s disease brain. Brain Res. 751, 323–329

    Article  PubMed  CAS  Google Scholar 

  • Johnson, G. V., LeShoure, R. J. (2004). Immunoblot analysis reveals that isopeptide antibodies do not specifically recognize the epsilon-(gamma-glutamyl)lysine bonds formed by transglutaminase activity. J. Neurosci. Meth. 134, 151–158

    Article  CAS  Google Scholar 

  • Karlsson, M., Mathers, J., Dickinson, R. J., Mandl, M., Keyse, S. M. (2004). Both nuclear-cytoplasmic shuttling of the dual specificity phosphatase MKP-3 and its ability to anchor MAP kinase in the cytoplasm are mediated by a conserved nuclear export signal. J. Biol. Chem. 279, 41882–41891

    Article  PubMed  CAS  Google Scholar 

  • Kolch, W. (2005). Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat. Rev. Mol. Cell Biol. 6, 827–837

    Article  PubMed  CAS  Google Scholar 

  • Lenormand, P., Brondello, J.-M., Brunet, A., Pouyssegur, J. (1998). Growth factor-induced p42/p44 MAPK nuclear translocation and retention requires both MAPK activation and neosynthesis of nuclear anchoring proteins. J. Cell Biol. 142, 625–633

    Article  PubMed  CAS  Google Scholar 

  • Lesort, M., Attanavanich, K., Zhang, J., Johnson, G. V. (1998). Distinct nuclear localization and activity of tissue transglutaminase. J. Biol. Chem. 273, 11991–11994

    Article  PubMed  CAS  Google Scholar 

  • Lorand, L., Graham, R. M. (2003). Transglutaminases: Crosslinking enzymes with pleiotropic functions. Nat. Rev. Mol. Cell Biol. 4, 140–156

    Article  PubMed  CAS  Google Scholar 

  • Maggio, N., Sellitti, S., Capano, C. P., Papa, M. (2001). Tissue-transglutaminase in rat and human brain: Light and electron immunocytochemical analysis and in situ hybridization study. Brain Res. Bull. 56, 173–182

    Article  PubMed  CAS  Google Scholar 

  • Martin, H., Flandez, M., Nombela, C., Molina, M. (2005). Protein phosphatases in MAPK signalling: We keep learning from yeast. Mol. Microbiol. 58, 6–16

    Article  PubMed  CAS  Google Scholar 

  • Milakovic, T., Tucholski, J., McCoy, E., Johnson, G. V. W. (2004). Intracellular localization and activity state of tissue transglutaminase differentially impacts cell death. J. Biol. Chem. 279, 8715–8722

    Article  PubMed  CAS  Google Scholar 

  • Nedivi, E., Hevroni, D., Naot, D., Israeli, D., Citri, Y. (1993). Numerous candidate plasticity-related genes revealed by differential cDNA cloning. Nature 363, 718–722

    Article  PubMed  CAS  Google Scholar 

  • Nunomura, K., Kawakami, S., Shimizu, K., Hara, T., Nakamura, K., Terakawa, Y., Yamasaki, A., Ikegami, S. (2003). In vivo cross-linking of nucleosomal histones catalyzed by nuclear transglutaminase in starfish sperm and its induction by egg jelly triggering the acrosome reaction. Eur. J. Biochem. 270, 3750–3759

    Article  PubMed  CAS  Google Scholar 

  • Obsil, T., Ghirlando, R., Klein, D. C., Ganguly, S., Dyda, F. (2001). Crystal structure of the 14-3-3zeta:Serotonin N-acetyltransferase complex. A role for scaffolding in enzyme regulation. Cell 105, 257–267

    Article  PubMed  CAS  Google Scholar 

  • Patterson, S. L., Pittenger, C., Morozov, A., Martin, K. C., Scanlin, H., Drake, C., Kandel, E. R. (2001) Some forms of cAMP-mediated long-lasting potentiation are associated with release of BDNF and nuclear translocation of phospho-MAP kinase. Neuron 32, 123–140

    Article  PubMed  CAS  Google Scholar 

  • Peng, X., Zhang, Y., Zhang, H., Graner, S., Williams, J. F., Levitt, M. L., Lokshin, A. (1999). Interaction of tissue transglutaminase with nuclear transport protein importin-alpha3. FEBS Lett. 446, 35–39

    Article  PubMed  CAS  Google Scholar 

  • Philipova, R., Whitaker, M. (2005). Active ERK1 is dimerized in vivo: Biphosphodimers generate peak kinase activity and monophosphodimer maintain basal ERK1 activity. J. Cell Sci. 118, 5767–5776

    Article  PubMed  CAS  Google Scholar 

  • Rosenblum, K., Futter, M., Voss, K., Erent, M., Skehel, P. A., French, P., Obosi, L., Jones, M. W., Bliss, T. V. (2002). The role of extracellular regulated kinases I/II in late-phase long-term potentiation. J. Neurosci. 22, 5432–5411

    PubMed  CAS  Google Scholar 

  • Sala, C., Rudolph-Correia, S., Sheng, M. (2000). Developmentally regulated NMDA receptor-dependent dephosphorylation of cAMP response element-binding protein (CREB) in hippocampal neurons. J. Neurosci. 20, 3529–3536

    PubMed  CAS  Google Scholar 

  • Sanchez-del-Rio, M., Reuter, U. (2004). Migraine aura: New information on underlying mechanisms. Curr. Opin. Neurol. 17, 289–293

    Article  PubMed  Google Scholar 

  • Sano, M., Kohno, M., Iwanaga, M. (1995). The activation and nuclear translocation of extracellular signal-regulated kinases (ERK-1 and -2) appear not to be required for elongation of neurites in PC12d cells. Brain Res. 688, 213–218

    Article  PubMed  CAS  Google Scholar 

  • Segal, R. A., Greenberg, M. E. (1996). Intracellular signaling pathways activated by neurotrophic factors. Annu. Rev. Neurosci. 19, 463–489

    PubMed  CAS  Google Scholar 

  • Shimizu, K., Kuroda, S., Yamamori, B., Matsuda, S., Kaibuchi, K., Yamauchi, T., Isobe, T., Irie, K., Matsumoto, K., Takai, Y. (1994). Synergistic activation by Ras and 14-3-3 protein of a mitogen-activated protein kinase kinase kinase named Ras-dependent extracellular signal-regulated kinase kinase stimulator. J. Biol. Chem. 269, 22917–22920

    PubMed  CAS  Google Scholar 

  • Thiels, E., Kanterewicz, B. I., Norman, E. D., Trzaskos, J. M., Klann, E. (2002). Long-term depression in the adult hippocampus in vivo involves activation of extracellular signal-regulated kinase and phosphorylation of ELK-1. J. Neurosci. 22, 2054–2062

    PubMed  CAS  Google Scholar 

  • Traverse, S., Gomez, N., Paterson, H., Marshall, C., Cohen, P. (1992). Sustained activation of the mitogen-activated protein (MAP) kinase cascade may be required for differentiation of PC12 cells. Comparison of the effects of nerve growth factor and epidermal growth factor. Biochem. J. 288, 351–355

    PubMed  CAS  Google Scholar 

  • Van Der Hoeven, P. C., Van Der Wal, J. C., Ruurs, P., Van Blitterswijk, W. J. (2000). Protein kinase C activation by acidic proteins including 14-3-3. Biochem. J. 347, 781–785

    Article  Google Scholar 

  • Waltereit, R., Dammermann, B., Wulff, P., Scafidi, J., Staubli, U., Kauselmann, G., Bundman, M., Kuhl, D. (2001). Arg3.1/arc mRNA induction by Ca2+ and cAMP requires protein kinase A and mitogen-activated protein kinase/extracellular regulated kinase activation. J. Neurosci. 21, 5484–5493

    PubMed  CAS  Google Scholar 

  • Whitmarsh, A. J., Davis, R. J. (1998). Structural organization of MAP-kinase signaling modules by scaffold proteins in yeast and mammals. Trends Biochem. Sci. 23, 481–485

    Article  PubMed  CAS  Google Scholar 

  • Wu, G. Y., Deisseroth, K., Tsien, R. W. (2001). Activity-dependent CREB phosphorylation: Convergence of a fast, sensitive calmodulin kinase pathway and a slow, less sensitive mitogen-activated protein kinase pathway. Proc. Natl. Acad. Sci. USA 98, 2808–2813

    Article  PubMed  CAS  Google Scholar 

  • Yamamori, B., Kuroda, S., Shimizu, K., Fukui, K., Ohtsuka, T., Takai, Y. (1995). Purification of a Ras-dependent mitogen-activated protein kinase kinase kinase from bovine brain cytosol and its identification as a complex of b-Raf and 14-3-3 proteins. J. Biol. Chem. 270, 11723–11726

    Article  PubMed  CAS  Google Scholar 

  • Zhao, M., Adams, J. P., Dudek, S. M. (2005). Pattern-dependent role of NMDA receptors in action potential generation: Consequences on extracellular signal-regulated kinase activation. J. Neurosci. 25, 7032–7039

    Article  PubMed  CAS  Google Scholar 

  • Zhao, Y., Bjorbaek, C., Weremowicz, S., Morton, C. C., Moller, D. E. (1995). Rsk3 encodes a novel pp90rsk isoform with a unique N-terminal sequence: Growth factor-stimulated kinase function and nuclear translocation. Mol. Cell Biol. 15, 4353–4363

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank J. Paige Adams and Rachel Robinson for some of the Western blots and Negin Martin, Marc Sommer, and Mariel Birnbaumer for critical reading of the manuscript. This research was supported by the Intramural Research Program of the National Institutes of Health and the National Institute of Environmental Health Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serena M. Dudek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lundquist, J., Dudek, S. Differential activation of extracellular signal-regulated kinase 1 and a related complex in neuronal nuclei. Brain Cell Bio 35, 267–281 (2006). https://doi.org/10.1007/s11068-008-9018-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11068-008-9018-7

Keywords

Navigation