Skip to main content

Advertisement

Log in

Self-Assembled Biodegradable Nanoparticles Developed by Direct Dialysis for the Delivery of Paclitaxel

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

The main objective of this study was to obtain self-assembled biodegradable nanoparticles by a direct dialysis method for the delivery of anticancer drug. The in vitro cellular particle uptake and cytotoxicity to C6 glioma cell line were investigated.

Methods

Self-assembled anticancer drugs—paclitaxel-loaded poly(d,l-lactic-co-glycolic acid) (PLGA) and poly(l-lactic acid) (PLA) nanoparticles—were achieved by direct dialysis. The physical and chemical properties of nanoparticles were characterized by various state-of-the-art techniques. The encapsulation efficiency and in vitro release profile were measured by high-performance liquid chromatography. Particle cellular uptake was studied using confocal microscopy, microplate reader, and flow cytometry. In addition, the cytotoxicity of this drug delivery system was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay on C6 glioma cell line to predict the possible dose response of paclitaxel-loaded PLGA and PLA nanoparticles.

Results

PLGA and PLA nanoparticles with or without vitamin E tocopherol polyethylene glycol succinate (TPGS) as an additive were obtained, in which the sustained release of paclitaxel of more than 20 days was achieved. The coumarin6-loaded PLGA and PLA nanoparticles could penetrate the C6 glioma cell membrane and be internalized. The cytotoxicity of paclitaxel-loaded nanoparticles seemed to be higher than that of commercial Taxol® after 3 days incubation when paclitaxel concentrations were 10 and 20 μg/ml.

Conclusions

Direct dialysis could be employed to achieve paclitaxel-loaded PLGA and PLA nanoparticles, which could be internalized by C6 glioma cells and enhance the cytotoxicity of paclitaxel because of its penetration to the cytoplasm and sustained release property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

DMF:

dimethylformamide

PBS:

phosphate-buffered saline

PLA:

poly(poly(l-lactic acid)

PLGA:

poly(d,l-lactic-co-glycolic acid)

References

  1. W. P. Mcguire E. K. Rowinsky N. B. Rosenshein F. C. Grumbine D. S. Ettinger D. K. Armstrong R. C. Donehower (1989) ArticleTitleTaxol: a unique antineoplastic agent with significant activity in advanced ovarian epithelial neoplasms Ann. Intern. Med. 111 273–279 Occurrence Handle2569287 Occurrence Handle1:STN:280:BiaA3svhvVY%3D

    PubMed  CAS  Google Scholar 

  2. F. A. Holmes R. S. Walters R. L. Theriault A. D. Forman L. K. Newton M. N. Raber A. U. Buzdar D. K. Frye G. N. Hortobagyi (1991) ArticleTitlePhase II trials of taxol, an active drug in the treatment of metastatic breast cancer Natl. Cancer Inst. 83 1797–1805 Occurrence Handle1:STN:280:By2D2sbivFE%3D

    CAS  Google Scholar 

  3. E. K. Rowinsky M. Wright B. Monsarrat G. J. Lesser R. C. Donehower (1993) ArticleTitleTaxol: pharmacology, metabolism and clinical implications Cancer Surv. 17 283–301 Occurrence Handle7907949 Occurrence Handle1:CAS:528:DyaK2cXktVSjurs%3D

    PubMed  CAS  Google Scholar 

  4. S. Gagandeep P. M. Novikoff M. Ott S. Gupta (1999) ArticleTitlePaclitaxel shows cytotoxic activity in human hepatocellular carcinoma cell lines Cancer Res. 136 109–118 Occurrence Handle1:CAS:528:DyaK1MXps1Khsg%3D%3D

    CAS  Google Scholar 

  5. S. B. Horwitz L. Lothstein J. J. Manfredi (1986) ArticleTitleTaxol: mechanisms of action and resistance Ann. N.Y. Acad. Sci. 466 737–744

    Google Scholar 

  6. M. A. Jordan R. J. Toso D. Thrower (1993) ArticleTitleMechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations Proc. Natl. Acad. Sci. USA 90 9552–9556 Occurrence Handle8105478 Occurrence Handle1:CAS:528:DyaK3sXms1aisrg%3D

    PubMed  CAS  Google Scholar 

  7. J. J. Manfredi J. Parness S. B. Horwithz (1982) ArticleTitleTaxol binds to cellular microtubules J. Cell Biol. 94 688–696 Occurrence Handle6127342 Occurrence Handle10.1083/jcb.94.3.688 Occurrence Handle1:CAS:528:DyaL38Xls1Snsbk%3D

    Article  PubMed  CAS  Google Scholar 

  8. K. L. Xu R. F. Luduena (2002) ArticleTitleCharacterization of nuclear βII-tubulin in tumor cells: a possible novel target for taxol Cell Motil. Cytoskelet. 53 39–52 Occurrence Handle10.1002/cm.10060 Occurrence Handle1:CAS:528:DC%2BD38XnslenurY%3D

    Article  CAS  Google Scholar 

  9. J. J. Zhong (2002) ArticleTitlePlant cell culture for production of paclitaxel and other taxanes J. Biosci. Bioeng. 94 IssueID6 591–599 Occurrence Handle16233355 Occurrence Handle1:CAS:528:DC%2BD3sXhsVOnsb8%3D

    PubMed  CAS  Google Scholar 

  10. O. Lehoczky A. Bagameri J. Udvary T. Pulay (2001) ArticleTitleSide effects of paclitaxel therapy in ovarian cancer patients Eur. J. Gynaecol. Oncol. 22 IssueID1 81–84 Occurrence Handle11321504 Occurrence Handle1:STN:280:DC%2BD3MvotlOrsA%3D%3D

    PubMed  CAS  Google Scholar 

  11. A. K. Singla A. Garg D. Aggarwal (2002) ArticleTitlePaclitaxel and its formulations Int. J. Pharm. 235 179–192 Occurrence Handle11879753 Occurrence Handle10.1016/S0378-5173(01)00986-3 Occurrence Handle1:CAS:528:DC%2BD38XhsV2qsro%3D

    Article  PubMed  CAS  Google Scholar 

  12. P. R. Lockman R. J. Mumper M. A. Khan (2002) ArticleTitleNanoparticle technology for drug delivery across the blood brain barrier Drug Dev. Ind. Pharm. 28 IssueID1 1–13 Occurrence Handle11858519 Occurrence Handle10.1081/DDC-120001481 Occurrence Handle1:CAS:528:DC%2BD38Xht1Omsbk%3D

    Article  PubMed  CAS  Google Scholar 

  13. C. Couvreur R. L. Treuple (1990) ArticleTitleNanoparticles as microcarriers for anticancer drugs Adv. Drug Deliv. Rev. 5 209–230 Occurrence Handle10.1016/0169-409X(90)90017-M Occurrence Handle1:CAS:528:DyaK3MXivF2rsg%3D%3D

    Article  CAS  Google Scholar 

  14. S. S. Feng S. Chien (2003) ArticleTitleChemotherapeutic engineering: application and further development of chemical engineering principles for chemotherapy of cancer and other diseases Chem. Eng. Sci. 58 4087–4114 Occurrence Handle1:CAS:528:DC%2BD3sXntVajt7w%3D

    CAS  Google Scholar 

  15. R. A. Jain (2000) ArticleTitleThe manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) devices Biomaterials 21 2475–2490 Occurrence Handle11055295 Occurrence Handle10.1016/S0142-9612(00)00115-0 Occurrence Handle1:CAS:528:DC%2BD3cXmslKmtL0%3D

    Article  PubMed  CAS  Google Scholar 

  16. S. S. Feng L. Mu B. H. Chen D. Pack (2002) ArticleTitlePolymeric nanospheres fabricated with natural emulsifiers for clinical administration of an anticancer drug paclitaxel (Taxol®) Mater. Sci. Eng., C 20 85–92 Occurrence Handle10.1016/S0928-4931(02)00017-6

    Article  Google Scholar 

  17. T. Govender S. Stolnik M. C. Garnett L. Lllum S. S. Davis (1999) ArticleTitlePLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug J. Control. Release 57 171–185 Occurrence Handle9971898 Occurrence Handle10.1016/S0168-3659(98)00116-3 Occurrence Handle1:CAS:528:DyaK1MXovFajtA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  18. C. Fonseca S. Simoes R. Gaspar (2002) ArticleTitlePaclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity J. Control. Release 83 273–286 Occurrence Handle12363453 Occurrence Handle10.1016/S0168-3659(02)00212-2 Occurrence Handle1:CAS:528:DC%2BD38XntlymtLY%3D

    Article  PubMed  CAS  Google Scholar 

  19. Y. C. Dong S. S. Feng (2004) ArticleTitleMethoxy poly(ethylene glycol)–poly(lactide) (MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs Biomaterials 25 2843–2849 Occurrence Handle14962562 Occurrence Handle1:CAS:528:DC%2BD2cXhtVenur0%3D

    PubMed  CAS  Google Scholar 

  20. K. S. Soppimath T. M. Aminabhavi A. R. Kulkarni (2001) ArticleTitleBiodegradable polymeric nanoparticles as drug delivery devices J. Control. Release 70 1–20 Occurrence Handle11166403 Occurrence Handle10.1016/S0168-3659(00)00339-4 Occurrence Handle1:CAS:528:DC%2BD3MXovV2rtQ%3D%3D

    Article  PubMed  CAS  Google Scholar 

  21. M. L. Hans A. M. Lowman (2002) ArticleTitleBiodegradable nanoparticles for drug delivery and targeting Curr. Opin. Solid State Mater. Sci. 6 319–327 Occurrence Handle1:CAS:528:DC%2BD38XpsFegtLg%3D

    CAS  Google Scholar 

  22. F. B. Landry D. V. Bazile G. Spenlehauer M. Veillard J. Kreuter (1995) ArticleTitleRelease of the fluorescent marker Prodan® from poly(d,l-lactic acid) nanoparticles coated with albumin or polyvinyl alcohol in model digestive fluids (USP XXII) J. Control. Release 44 227–236

    Google Scholar 

  23. E. C. Lavelle S. Sharif N. W. Thomas J. Holland S. S. Davis (1995) ArticleTitleThe importance of gastrointestinal uptake of particles in the design of oral delivery systems Adv. Drug Deliv. Rev. 18 5–22 Occurrence Handle10.1016/0169-409X(95)00048-C Occurrence Handle1:CAS:528:DyaK28Xns1OktA%3D%3D

    Article  CAS  Google Scholar 

  24. Y. I. Jeong J. B. Cheon S. H. Kim J. W. Nah Y. M. Lee Y. K. Sung T. Akaike C. S. Cho (1998) ArticleTitleClonazepam release from core-shell type nanoparticles in vitro J. Control. Release 51 169–178 Occurrence Handle9685914 Occurrence Handle10.1016/S0168-3659(97)00163-6 Occurrence Handle1:CAS:528:DyaK1cXot12lsA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  25. Y. I. Jeong Y. H. Shim C. Y. Choi M. K. Jang G. M. Shin J. W. Nah (2003) ArticleTitleSurfactant-free nanoparticles of poly(dl-lactide-co-glycolide) prepared with poly(l-lactide)/poly(ethylene glycol) J. Appl. Polym. Sci. 89 IssueID4 1116–1123 Occurrence Handle10.1002/app.12297 Occurrence Handle1:CAS:528:DC%2BD3sXktV2lu7c%3D

    Article  CAS  Google Scholar 

  26. Y. I. Jeong C. S. Cho S. H. Kim K. S. Ko S. I. Kim Y. H. Shim J. W. Nah (2001) ArticleTitlePreparation of poly(dl-lactide-co-glycolide) nanoparticles without surfactant J. Appl. Polym. Sci. 80 2228–2236 Occurrence Handle1:CAS:528:DC%2BD3MXis1OntLc%3D

    CAS  Google Scholar 

  27. S. Stolnik M. C. Garnett M. C. Davis L. Illum M. Bousta M. Vert S. S. Davis (1995) ArticleTitleThe colloidal properties of surfactant-free biodegradable nanospheres from poly(β-malic acid-cobenzyl malate) and poly(lactic acid-co-glycolide) Colloids Surf., A 97 235–245 Occurrence Handle10.1016/0927-7757(95)03081-N Occurrence Handle1:CAS:528:DyaK2MXmt1yluro%3D

    Article  CAS  Google Scholar 

  28. K. A. Foster M. Yazdanian K. L. Audus (2001) ArticleTitleMicroparticulate uptake mechanism of in-vitro cell culture models of the respiratory epithelium J. Pharm. Pharmacol. 53 57–66 Occurrence Handle11206193 Occurrence Handle10.1211/0022357011775190 Occurrence Handle1:CAS:528:DC%2BD3MXht1Shsrg%3D

    Article  PubMed  CAS  Google Scholar 

  29. L. Mu S. S. Feng (2002) ArticleTitleVitamin E TPGS used as emulsifier in the solvent evaporation/extraction technique for fabrication of polymeric nanospheres for controlled release of paclitaxel (Taxol®) J. Control. Release 80 129–144 Occurrence Handle11943393 Occurrence Handle10.1016/S0168-3659(02)00025-1 Occurrence Handle1:CAS:528:DC%2BD38XisFyrsLo%3D

    Article  PubMed  CAS  Google Scholar 

  30. S. S. Feng G. F. Huang (2001) ArticleTitleEffect of emulsifiers on the controlled release of paclitaxel from nanospheres of biodegradable polymers J. Control. Release 1 53–69

    Google Scholar 

  31. H. Suh B. Jeong F. Liu S. W. Kim (1998) ArticleTitleCellular uptake study of biodegradable nanoparticles in vascular smooth muscle cells Pharm. Res. 15 IssueID9 1495–1498 Occurrence Handle9755907 Occurrence Handle10.1023/A:1011982428413 Occurrence Handle1:CAS:528:DyaK1cXmtFygsr4%3D

    Article  PubMed  CAS  Google Scholar 

  32. I. Kolleck H. Wissel F. Guthmann (2002) ArticleTitleHDL-Holoparticle uptake by alveolar type Π cells effect of vitamin E status Am. J. Respir. Cell Mol. Biol. 27 57–63 Occurrence Handle12091246 Occurrence Handle1:CAS:528:DC%2BD38XlsVGns7g%3D

    PubMed  CAS  Google Scholar 

  33. P. Peter R. R. Barbara L. Peter W. A. Heidi E. Walter P. M. Hans (2002) ArticleTitleTransfer of lipophilic markers from PLGA and polystyrene nanoparticles to Caco-2 monolayers mimics particle uptake Pharm. Res. 19 IssueID5 595–601

    Google Scholar 

  34. M. E. Christine L. Deborah R. Robinson C. Coester G. S. Kwon J. Samuel (2002) ArticleTitleAnalysis of poly(d,l-lactic-co-glycolic acid) nanosphere uptake by human dendritic cells and macrophages in vitro Pharm. Res. 19 IssueID10 1480–1487

    Google Scholar 

  35. J. S. Chawla M. M. Amiji (2003) ArticleTitleCellular uptake and concentrations of tamoxifen upon administration in poly (ɛ-caprolactone) nanoparticles AAPS PharmSci 5 IssueID1 1–7 Occurrence Handle10.1208/ps050103

    Article  Google Scholar 

  36. Y. Mo L. Y. Lim (2004) ArticleTitleMechanic study of the uptake of wheat germ agglutinin-conjugated PLGA nanoparticles by A549 cells J. Pharm. Sci. 93 20–28 Occurrence Handle14648632 Occurrence Handle10.1002/jps.10507 Occurrence Handle1:CAS:528:DC%2BD2cXjvFWgsg%3D%3D

    Article  PubMed  CAS  Google Scholar 

  37. G. Borchard K. L. Audus F. Shi J. Kreuter (1994) ArticleTitleUptake of surfactant-coated poly(methyl methacrylate)-nanoparticles by bovine brain microvessel endothelial cell monolayers Int. J. Pharm. 110 29–35 Occurrence Handle10.1016/0378-5173(94)90372-7 Occurrence Handle1:CAS:528:DyaK2cXlsVWntrs%3D

    Article  CAS  Google Scholar 

  38. A. E. Gulyaev S. E. Gelperina I. N. Skidan A. S. Antropov G. Y. Kivman J. Kreuter (1999) ArticleTitleSignificant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles Pharm. Res. 16 1564–1569 Occurrence Handle10554098 Occurrence Handle10.1023/A:1018983904537 Occurrence Handle1:CAS:528:DyaK1MXntVOhtbY%3D

    Article  PubMed  CAS  Google Scholar 

  39. P. Ramge R. E. Unger J. B. Oltrogge D. Begley H. V. Briesen J. Kreuter (2000) ArticleTitlePolysorbate-80 coating enhances uptake of polybutylcyanoacrylate (PBCA)-nanoparticles by human, bovine and murine primary brain capillary endothelial cells Eur. J. Neurol. 12 1935–1940

    Google Scholar 

  40. M. P. Desai V. Labhastetwar G. L. Amidon R. J. Levy (1996) ArticleTitleGastrointestinal uptake of biodegradable microparticles: effect of particle size Pharm. Res. 13 1838–1845 Occurrence Handle8987081 Occurrence Handle10.1023/A:1016085108889 Occurrence Handle1:CAS:528:DyaK2sXltVSquw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  41. T. Jung W. Kamm A. Breitenbach E. Kaiserling J. X. Xiao T. Kissel (2000) ArticleTitleBiodegradable nanoparticles for oral delivery of peptides: is there a role for polymers to affect mucosal uptake? Eur. J. Pharm. Biopharm. 50 147–160 Occurrence Handle10840198 Occurrence Handle1:CAS:528:DC%2BD3cXjslyisrs%3D

    PubMed  CAS  Google Scholar 

  42. W. Zauner N. A. Farrow A. M. R. Hainess (2001) ArticleTitleIn vitro uptake of polystyrene microspheres: effect of particle size, cell line and cell density J. Control. Release 71 39–51 Occurrence Handle11245907 Occurrence Handle10.1016/S0168-3659(00)00358-8 Occurrence Handle1:CAS:528:DC%2BD3MXhs1Wjs7k%3D

    Article  PubMed  CAS  Google Scholar 

  43. S. K. Sahoo J. Panyam S. Prabha V. Labhasetwar (2002) ArticleTitleResidual polyvinyl alcohol associated with poly(d,l-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake J. Control. Res. 82 105–114 Occurrence Handle1:CAS:528:DC%2BD38XltVOlur0%3D

    CAS  Google Scholar 

  44. M. P. Desai V. Labhasetwar E. Walter R. J. Levy G. L. Amidon (1997) ArticleTitleThe mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent Pharm. Res. 14 IssueID11 1568–1573 Occurrence Handle9434276 Occurrence Handle10.1023/A:1012126301290 Occurrence Handle1:CAS:528:DyaK2sXotVGnu7c%3D

    Article  PubMed  CAS  Google Scholar 

  45. J. Davda V. Labhasetwar (2002) ArticleTitleCharacterization of nanoparticles uptake by endothelial cells Int. J. Pharm. 233 51–59 Occurrence Handle11897410 Occurrence Handle10.1016/S0378-5173(01)00923-1 Occurrence Handle1:CAS:528:DC%2BD38XhslymsLg%3D

    Article  PubMed  CAS  Google Scholar 

  46. J. Panyam S. K. Sahoo S. Prabha T. Bargar V. Labhasetwar (2003) ArticleTitleFluorescence and electron microscopy probes for cellular and tissue uptake of poly(d,l-lactide-co-glycolide) nanoparticles Int. J. Pharm. 262 1–11 Occurrence Handle12927382 Occurrence Handle10.1016/S0378-5173(03)00295-3 Occurrence Handle1:CAS:528:DC%2BD3sXmtFalur4%3D

    Article  PubMed  CAS  Google Scholar 

  47. A. Watts M. Marsh (1992) ArticleTitleEndocytosis: what goes in and how? J.Cell Sci. 103 1–8 Occurrence Handle1429899

    PubMed  Google Scholar 

  48. W. Noske H. Lentzen K. Lange K. Keller (1982) ArticleTitlePhagocytotic activity of glial cells in culture Exp. Cell Res. 142 437–445 Occurrence Handle6293852 Occurrence Handle10.1016/0014-4827(82)90385-8 Occurrence Handle1:STN:280:BiyD2sblvV0%3D

    Article  PubMed  CAS  Google Scholar 

  49. C. Zimmer R. Weissleder K. Poss A. Bogdanova S. C. Wright W. S. Enochs (1995) ArticleTitleMR imaging of phagocytosis in experimental gliomas Radiology 197 533–538 Occurrence Handle7480707 Occurrence Handle1:STN:280:BymD38jpslY%3D

    PubMed  CAS  Google Scholar 

  50. M. Desjardins G. Griffiths (2003) ArticleTitlePhagocytosis: latex leads the way Curr. Opin. Cell Biol. 15 498–503 Occurrence Handle12892792 Occurrence Handle10.1016/S0955-0674(03)00083-8 Occurrence Handle1:CAS:528:DC%2BD3sXlvVGjt74%3D

    Article  PubMed  CAS  Google Scholar 

  51. M. L. Martin C. M. Regan (1991) ArticleTitleTransient heat shock in mid-G1-phase of the C6 glioma cell cycle impairs entry into S-phase Toxicol. Lett. 59 197–202 Occurrence Handle1755026 Occurrence Handle10.1016/0378-4274(91)90072-E Occurrence Handle1:STN:280:By2D1MvmtVY%3D

    Article  PubMed  CAS  Google Scholar 

  52. E. Raymond A. Hanauske S. Faivre et al. (1997) ArticleTitleEffects of prolonged versus short-term exposure paclitaxel (Taxol®) on human tumorcolony-forming units Anti-Cancer Drugs 8 IssueID4 379–385 Occurrence Handle9180392 Occurrence Handle1:CAS:528:DyaK2sXjsVyrsr4%3D

    PubMed  CAS  Google Scholar 

  53. J. E. Liebmann J. A. Cook C. Lipschultz D. Teague J. Fisher J. B. Mitchell (1993) ArticleTitleCytotoxic studies of paclitaxel (Taxol®) in human tumour cell lines Br. J. Cancer 68 1104–1109 Occurrence Handle7903152 Occurrence Handle1:CAS:528:DyaK2cXivV2mtrw%3D

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National University of Singapore under the grant number R279-000-095-112. The authors thank Professor Si-Shen Feng for many helpful discussions. They also express their appreciation to Professor Timothy Lee for providing the C6 glioma cell line samples and lab officer Kong Heng for helpful discussion and technical support on the confocal microscopy experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Hwa Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, J., Wang, CH. Self-Assembled Biodegradable Nanoparticles Developed by Direct Dialysis for the Delivery of Paclitaxel. Pharm Res 22, 2079–2090 (2005). https://doi.org/10.1007/s11095-005-7782-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-005-7782-y

Key Words

Navigation