Skip to main content

Advertisement

Log in

Optical Imaging of the Adoptive Transfer of Human Endothelial Cells in Mice Using Anti-Human CD31 Monoclonal Antibody

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

The development of endothelium-specific imaging agents capable of specific binding to human cells under the conditions of flow for the needs of regenerative medicine and cancer research. The goal of the study was testing the feasibility of optical imaging of human endothelial cells implanted in mice.

Methods

Mouse model of adoptive human endothelial cell transfer was obtained by implanting cells in Matrigel matrix in subcutaneous space (Kang, Torres, Wald, Weissleder, and Bogdanov, Jr., Targeted imaging of human endothelial-specific marker in a model of adoptive cell transfer. Lab. Invest. 86: 599-609, 2006). Several endothelium-specific proteins were labeled with near-infrared fluorochrome (Cy5.5) and tested in vitro. Fluorescence imaging using anti-human CD31 antibody was performed in vivo. The obtained results were corroborated by using fluorescence microscopy of tissue sections.

Results

We determined that monoclonal anti-human CD31 antibodies labeled with Cy5.5 were efficiently binding to human endothelial cells and were not subject to rapid endocytosis.We further demonstrated that specific near-infrared optical imaging signal was present only in Matrigel implants seeded with human endothelium cells and was absent from control Matrigel implants. Histology showed staining of cells lining vessels and revealed the formation of branched networks of CD31-positive cells.

Conclusions

Anti-human CD31 antibodies tagged with near-infrared fluorochromes can be used for detection of perfused blood vessels harboring human endothelial cells in animal models of adoptive transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. W. Kang, D. Torres, L. Wald, R. Weissleder, and A. A. Bogdanov, Jr. Targeted imaging of human endothelial-specific marker in a model of adoptive cell transfer. Lab. Invest. 86:599–609 (2006).

    PubMed  CAS  Google Scholar 

  2. A. L. Klibanov. Microbubble contrast agents: targeted ultrasound imaging and ultrasound-assisted drug-delivery applications. Invest. Radiol. 41:354–362 (2006).

    Article  PubMed  Google Scholar 

  3. F. G. Blankenberg, C. Mari, and H. W. Strauss. Development of radiocontrast agents for vascular imaging: progress to date. Am. J. Cardiovasc. Drugs 2:357–365 (2002).

    Article  PubMed  Google Scholar 

  4. X. Chen, M. Tohme, R. Park, Y. Hou, J. R. Bading, and P. S. Conti. Micro-PET imaging of alphavbeta3-integrin expression with 18F-labeled dimeric RGD peptide. Mol. Imag. 3:96–104 (2004).

    Article  CAS  Google Scholar 

  5. H. Leong-Poi, J. Christiansen, A. L. Klibanov, S. Kaul, and J. R. Lindner. Noninvasive assessment of angiogenesis by ultrasound and microbubbles targeted to alpha(v)-integrins. Circulation 107:455–60 (2003).

    Article  PubMed  CAS  Google Scholar 

  6. M. M. Sadeghi, J. S. Schechner, S. Krassilnikova, A. A. Gharaei, J. Zhang, N. Kirkiles-Smith, A. J. Sinusas, B. L. Zaret, and J. R. Bender. Vascular cell adhesion molecule-1-targeted detection of endothelial activation in human microvasculature. Transplant. Proc. 36:1585–91 (2004).

    Article  PubMed  CAS  Google Scholar 

  7. K. A. Kelly, J. R. Allport, A. Tsourkas, V. R. Shinde-Patil, L. Josephson, and R. Weissleder. Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle. Circ. Res. 96:327–336 (2005).

    Article  PubMed  CAS  Google Scholar 

  8. S. Boutry, C. Burtea, S. Laurent, G. Toubeau, L. Vander Elst, and R. N. Muller. Magnetic resonance imaging of inflammation with a specific selectin-targeted contrast agent. Magn. Reson. Med. 53:800–807 (2005).

    Article  PubMed  CAS  Google Scholar 

  9. P. Valadon, J. D. Garnett, J. E. Testa, M. Bauerle, P. Oh, and J. E. Schnitzer. Screening phage display libraries for organ-specific vascular immunotargeting in vivo. Proc. Natl. Acad. Sci. USA 103:407–12 (2006).

    Article  PubMed  CAS  Google Scholar 

  10. E. R. Horak, R. Leek, N. Klenk, S. LeJeune, K. Smith, N. Stuart, M. Greenall, K. Stepniewska, and A. L. Harris. Angiogenesis, assessed by platelet/endothelial cell adhesion molecule antibodies, as indicator of node metastases and survival in breast cancer. Lancet 340:1120–1124 (1992).

    Article  PubMed  CAS  Google Scholar 

  11. S. B. Fox, K. C. Gatter, R. Bicknell, J. J. Going, P. Stanton, T. G. Cooke, and A. L. Harris. Relationship of endothelial cell proliferation to tumor vascularity in human breast cancer. Cancer Res. 53:4161–3 (1993).

    PubMed  CAS  Google Scholar 

  12. J. M. Runnels, P. Zamiri, J. A. Spencer, I. Veilleux, X. Wei, A. Bogdanov, and C. P. Lin. Imaging molecular expression on vascular endothelial cells by in vivo immunofluorescence microscopy. Mol. Imag. 5:31–40 (2006).

    Google Scholar 

  13. N. Koike, D. Fukumura, O. Gralla, P. Au, J. S. Schechner, and R. K. Jain. Tissue engineering: creation of long-lasting blood vessels. Nature 428:138–139 (2004).

    Article  PubMed  CAS  Google Scholar 

  14. H. W. Kang, L. Josephson, A. Petrovsky, R. Weissleder, and A. Bogdanov, Jr. Magnetic resonance imaging of inducible E-selectin expression in human endothelial cell culture. Bioconj. Chem. 13:122–127 (2002).

    Article  CAS  Google Scholar 

  15. M. T. Nakada, K. Amin, M. Christofidou-Solomidou, C. D. O’Brien, J. Sun, I. Gurubhagavatula, G. A. Heavner, A. H. Taylor, C. Paddock, Q. H. Sun, J. L. Zehnder, P. J. Newman, S. M. Albelda, and H. M. DeLisser. Antibodies against the first Ig-like domain of human platelet endothelial cell adhesion molecule-1 (PECAM-1) that inhibit PECAM-1-dependent homophilic adhesion block in vivo neutrophil recruitment. J. Immunol. 164:452–462 (2000).

    PubMed  CAS  Google Scholar 

  16. A. Bogdanov, Jr, C. Lin, M. Simonova, L. Matuszewski, and R. Weissleder. Cellular activation of the self-quenched fluorescent reporter probe in tumor microenvironment. Neoplasia 4:228–236 (2002).

    Article  PubMed  CAS  Google Scholar 

  17. T. Troy, D. Jekic-McMullen, L. Sambucetti, and B. Rice. Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models. Mol. Imag. 3:19–23 (2004).

    Article  Google Scholar 

  18. J. S. Schechner, A. K. Nath, L. Zheng, M. S. Kluger, C. C. Hughes, M. R. Sierra-Honigmann, M. I. Lorber, G. Tellides, M. Kashgarian, A. L. Bothwell, and J. S. Pober. in vivo formation of complex microvessels lined by human endothelial cells in an immunodeficient mouse. [see comment]. Proc. Natl. Acad. Sci. USA 97:9191–9196 (2000).

    Article  PubMed  CAS  Google Scholar 

  19. D. K. Skovseth, T. Yamanaka, P. Brandtzaeg, E. C. Butcher, and G. Haraldsen. Vascular morphogenesis and differentiation after adoptive transfer of human endothelial cells to immunodeficient mice. Am. J. Pathol. 160:1629–1637 (2002).

    PubMed  CAS  Google Scholar 

  20. D. R. Enis, B. R. Shepherd, Y. Wang, A. Qasim, C. M. Shanahan, P. L. Weissberg, M. Kashgarian, J. S. Pober, and J. S. Schechner. Induction, differentiation, and remodeling of blood vessels after transplantation of Bcl-2-transduced endothelial cells. Proc. Natl. Acad. Sci. USA 102:425–430 (2005).

    Article  PubMed  CAS  Google Scholar 

  21. D. Hawryszand, and E. Sevick-Muraca. Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents. Neoplasia 2:388–417 (2000).

    Article  Google Scholar 

  22. V. Ntziachristos, C. Bremer, and R. Weissleder. Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur. Radiol. 13:195–208 (2003).

    PubMed  Google Scholar 

  23. V. Ntziachristos. Fluorescence molecular imaging. Annu. Rev. Biomed. Eng. 8:1–33 (2006).

    Article  PubMed  CAS  Google Scholar 

  24. K. Lichaand, and C. Olbrich. Optical imaging in drug discovery and diagnostic applications. Adv. Drug Deliv. Rev. 57:1087–1108 (2005).

    Article  CAS  Google Scholar 

  25. R. F. Nicosiaand, and A. Ottinetti. Modulation of microvascular growth and morphogenesis by reconstituted basement membrane gel in three-dimensional cultures of rat aorta: a comparative study of angiogenesis in matrigel, collagen, fibrin, and plasma clot. In Vitro Cell. Dev. Biol. 26:119–128 (1990).

    Article  Google Scholar 

  26. A. Passaniti, R. M. Taylor, R. Pili, Y. Guo, P. V. Long, J. A. Haney, R. R. Pauly, D. S. Grant, and G. R. Martin. A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab. Invest. 67:519–528 (1992).

    PubMed  CAS  Google Scholar 

  27. A. Petrovsky, E. Schellenberger, L. Josephson, R. Weissleder, and A. Bogdanov, Jr. Near-infrared fluorescent imaging of tumor apoptosis. Cancer Res. 63:1936–1942 (2003).

    PubMed  CAS  Google Scholar 

  28. D. M. McDonaldand, and P. L. Choyke. Imaging of angiogenesis: from microscope to clinic. Nat Med. 9:713–725 (2003).

    Article  CAS  Google Scholar 

  29. H. Holthofer, I. Virtanen, A. L. Kariniemi, M. Hormia, E. Linder, and A. Miettinen. Ulex europaeus I lectin as a marker for vascular endothelium in human tissues. Lab. Invest. 47:60–66 (1982).

    PubMed  CAS  Google Scholar 

  30. E. J. von Asmuth, E. F. Smeets, L. A. Ginsel, J. J. Onderwater, J. F. Leeuwenberg, and W. A. Buurman. Evidence for endocytosis of E-selectin in human endothelial cells. Eur. J. Immunol. 22:2519–2526 (1992).

    Article  Google Scholar 

  31. P. I. Chuang, B. A. Young, R. R. Thiagarajan, C. Cornejo, R. K. Winn, and J. M. Harlan. Cytoplasmic domain of E-selectin contains a non-tyrosine endocytosis signal. J. Biol. Chem. 272:24813–24818 (1997).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NIH RO1 EB000858 and EB000664. The authors are grateful to Dr. Marian Nakada (Centocor) for supplying anti-human CD31 monoclonal antibody and to Dr. Bill Luscinskas (Brigham and Women’s Hospital) for providing HUVEC cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei A. Bogdanov Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogdanov, A.A., Lin, C.P. & Kang, HW. Optical Imaging of the Adoptive Transfer of Human Endothelial Cells in Mice Using Anti-Human CD31 Monoclonal Antibody. Pharm Res 24, 1186–1192 (2007). https://doi.org/10.1007/s11095-006-9219-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9219-7

Key Words

Navigation