Skip to main content

Advertisement

Log in

Protective Effect of Coenzyme Q10-loaded Liposomes on the Myocardium in Rabbits with an Acute Experimental Myocardial Infarction

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

We assessed whether the infusion of Coenzyme Q10-loaded liposomes (CoQ10-L) in rabbits with an experimental myocardial infarction can result in increased intracellular delivery of CoQ10 and thus limit the fraction of the irreversibly damaged myocardium.

Methods

CoQ10-L, empty liposomes (EL), or Krebs–Henseleit (KH) buffer were administered by intracoronary infusion, followed by 30 min of occlusion and 3 h of reperfusion. Unisperse Blue dye was used to demarcate the net size of the occlusion-induced ischemic zone (“area at risk”) while nitroblue tetrazolium staining was used to detect the final fraction of the irreversibly damaged myocardium within the total area at risk.

Results

The total size of the area at risk in all experimental animals was approx. 20% wt. of the left ventricle (LV). The final irreversible damage in CoQ10-L-treated animals was only ca. 30% of the total area at risk as compared with ca. 60% in the group treated with EL (p < 0.006) and ca. 70% in the KH buffer-treated group (p < 0.001).

Conclusions

CoQ10-L effectively protected the ischemic heart muscle by enhancing the intracellular delivery of CoQ10 in hypoxic cardiocytes in rabbits with an experimental myocardial infarction as evidenced by a significantly decreased fraction of the irreversibly damaged heart within the total area at risk. CoQ10-L may provide an effective exogenous source of the CoQ10 in vivo to protect ischemic cells

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Ch:

Cholesterol

CoQ10-L:

Coenzyme Q10 liposomes

DD:

Detergent dialysis

DOTAP:

1,2-dioleoyl-3-trimethyl-ammonium-propane

ECG:

Electrocardiogram

ED:

Ethanol dissolution

EL:

Empty liposomes

EPR:

Enhanced permeability and retention

KH:

Kreb sHenseleit

LDL:

Low-density lipoprotein

LFH:

Lipid film hydration

LV:

Left ventricle

NBT:

Nitro blue tetrazolium

PC:

Egg phosphatidylcholine

PEG-PE:

1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]

REV:

Reverse phase evaporation

USB:

Unispearse blue dye

References

  1. F. L. Crane, I. L. Sun, and E. E. Sun. The essential functions of coenzyme Q. Clin. Investig. 71:S55–S59 (1993).

    Article  PubMed  CAS  Google Scholar 

  2. S. Greenberg and W. H. Frishman. Co-enzyme Q10: a new drug for cardiovascular disease. J. Clin. Pharmacol. 30:596–608 (1990).

    PubMed  CAS  Google Scholar 

  3. M. Sikorska, H. Borowy-Borowski, B. Zurakowski, and P. R. Walker. Derivatised alpha-tocopherol as a CoQ10 carrier in a novel water-soluble formulation. Biofactors 18:173–183 (2003).

    PubMed  CAS  Google Scholar 

  4. B. Sarter. Coenzyme Q10 and cardiovascular disease: a review. J. Cardiovasc. Nurs. 16:9–20 (2002).

    PubMed  Google Scholar 

  5. T. R. Kommuru, M. Ashraf, M. A. Khan, and I. K. Reddy. Stability and bioequivalence studies of two marketed formulations of coenzyme Q10 in beagle dogs. Chem. Pharm. Bull. (Tokyo) 47:1024–1028 (1999).

    CAS  Google Scholar 

  6. S. A. Mortensen. Perspectives on therapy of cardiovascular diseases with coenzyme Q10 (ubiquinone). Clin. Investig. 71:S116–S123 (1993).

    Article  PubMed  CAS  Google Scholar 

  7. L. Ernster and G. Dallner. Biochemical, physiological and medical aspects of ubiquinone function. Biochim. Biophys. Acta. 1271:195–204 (1995).

    PubMed  Google Scholar 

  8. P. Forsmark-Andree and L. Ernster. Evidence for a protective effect of endogenous ubiquinol against oxidative damage to mitochondrial protein and DNA during lipid peroxidation. Mol. Aspects Med. 15(Suppl):s73–s81 (1994).

    Article  PubMed  CAS  Google Scholar 

  9. M. Sunamori, H. Tanaka, T. Maruyama, I. Sultan, T. Sakamoto, and A. Suzuki. Clinical experience of coenzyme Q10 to enhance intraoperative myocardial protection in coronary artery revascularization. Cardiovasc. Drugs Ther. 5(Suppl 2):297–300 (1991).

    Article  PubMed  Google Scholar 

  10. N. Ferrara, P. Abete, G. Ambrosio, P. Landino, P. Caccese, P. Cirillo, A. Oradei, G. P. Littarru, M. Chiariello, and F. Rengo. Protective role of chronic ubiquinone administration on acute cardiac oxidative stress. J. Pharmacol. Exp. Ther. 274:858–865 (1995).

    PubMed  CAS  Google Scholar 

  11. R. Stocker, V. W. Bowry, and B. Frei. Ubiquinol-10 protects human low density lipoprotein more efficiently against lipid peroxidation than does alpha-tocopherol. Proc. Natl. Acad. Sci. U. S. A. 88:1646–1650 (1991).

    Article  PubMed  CAS  Google Scholar 

  12. K. Folkers and R. Simonsen. Two successful double-blind trials with coenzyme Q10 (vitamin Q10) on muscular dystrophies and neurogenic atrophies. Biochim. Biophys. Acta. 1271:281–286 (1995).

    PubMed  CAS  Google Scholar 

  13. K. Folkers, T. Hanioka, L. J. Xia, J. T. McRee, Jr., and P. Langsjoen. Coenzyme Q10 increases T4/T8 ratios of lymphocytes in ordinary subjects and relevance to patients having the AIDS related complex. Biochem. Biophys. Res. Commun. 176:786–791 (1991).

    Article  PubMed  CAS  Google Scholar 

  14. K. Folkers. Heart failure is a dominant deficiency of coenzyme Q10 and challenges for future clinical research on CoQ10. Clin. Investig. 71:S51–S54 (1993).

    Article  PubMed  CAS  Google Scholar 

  15. Y. Nakamura, M. Takahashi, J. Hayashi, H. Mori, S. Ogawa, Y. Tanabe, and K. Hara. Protection of ischaemic myocardium with coenzyme Q10. Cardiovasc. Res. 16:132–137 (1982).

    PubMed  CAS  Google Scholar 

  16. W. G. Nayler. The use of Q10 to protect ischemic heart muscle. In Y. Yakamura and Y. Iti (eds.), Biomedical and Clinical Aspects of Coenzyme Q10, Vol. 2, Elsevier, Amsterdam, 1980, pp. 409–425.

    Google Scholar 

  17. T. Furuta, I. Kodama, N. Kondo, J. Toyama, and K. Yamada. A protective effect of coenzyme Q10 on isolated rabbit ventricular muscle under hypoxic condition. J. Cardiovasc. Pharmacol. 4:1062–1067 (1982).

    Article  PubMed  CAS  Google Scholar 

  18. H. Matsumoto, H. Matasunaga, M. Kawauchi, F. Miyawaki, and K.-I. Aano. Effect of coenzime Q10 pretreatmant on myocardial preservation. Heart Transplant. 3:160–165 (1984).

    Google Scholar 

  19. H. Matasunaga, H. Matsumoto, T. Yoshitake, and M. Saigusa. Protection cardiac muscle in surgery. In Y. Yamamura, K. Folkers, and Y. Ito (eds.), Biomedical and Clinical Aspects of Coenzyme Q10, Elsevier, Amsterdam, 1980, pp. 67–76.

    Google Scholar 

  20. F. Okamoto, B. S. Allen, G. D. Buckberg, J. Leaf, and H. Bugyi. Reperfusate composition: supplemental role of intravenous and intracoronary coenzyme Q10 in avoiding reperfusion damage. J. Thorac. Cardiovasc. Surg. 92:573–582 (1986).

    PubMed  CAS  Google Scholar 

  21. H. Ohhara, H. Kanaide, and M. Nakamura. A protective effect of coenzyme Q10 on the adriamycin-induced cardiotoxicity in the isolated perfused rat heart. J. Mol. Cell. Cardiol. 13:741–752 (1981).

    Article  PubMed  CAS  Google Scholar 

  22. T. Konishi, Y. Nakamura, T. Konishi, and C. Kawai. Improvement in recovery of left ventricular function during reperfusion with coenzyme Q10 in isolated working rat heart. Cardiovasc. Res. 19:38–43 (1985).

    Article  PubMed  CAS  Google Scholar 

  23. S. Nagai, Y. Miyazaki, K. Ogawa, T. Satake, S. Sugiyama, and T. Ozawa. The effect of Coenzyme Q10 on reperfusion injury in canine myocardium. J. Mol. Cell Cardiol. 17:873–884 (1985).

    Article  PubMed  CAS  Google Scholar 

  24. Y. C. Chuang, J. Y. Chan, A. Y. Chang, M. Sikorska, H. Borowy-Borowski, C. W. Liou, and S. H. Chan. Neuroprotective effects of coenzyme Q10 at rostral ventrolateral medulla against fatality during experimental endotoxemia in the rat. Shock 19:427–432 (2003).

    Article  PubMed  CAS  Google Scholar 

  25. Y. F. Chen, Y. T. Lin, and S. C. Wu. Effectiveness of coenzyme Q10 on myocardial preservation during hypothermic cardioplegic arrest. J. Thorac. Cardiovasc. Surg. 107:242–247 (1994).

    PubMed  CAS  Google Scholar 

  26. M. Chello, P. Mastroroberto, R. Romano, E. Bevacqua, D. Pantaleo, R. Ascione, A. R. Marchese, and N. Spampinato. Protection by coenzyme Q10 from myocardial reperfusion injury during coronary artery bypass grafting. Ann. Thorac. Surg. 58:1427–1432 (1994).

    Article  PubMed  CAS  Google Scholar 

  27. W. V. Judy, W. W. Stogsdill, and K. Folkers. Myocardial preservation by therapy with coenzyme Q10 during heart surgery. Clin. Investig. 71:S155–S161 (1993).

    Article  PubMed  CAS  Google Scholar 

  28. J. Tanaka, R. Tominaga, M. Yoshitoshi, K. Matsui, M. Komori, A. Sese, H. Yasui, and K. Tokunaga. Coenzyme Q10: the prophylactic effect on low cardiac output following cardiac valve replacement. Ann. Thorac. Surg. 33:145–151 (1982).

    Article  PubMed  CAS  Google Scholar 

  29. S.T. Sinatra. Refractory congestive heart failure successfully managed with high dose coenzyme Q10 administration. Mol. Aspects Med. 18(Suppl):S299–S305 (1997).

    Article  PubMed  CAS  Google Scholar 

  30. E. M. Kurowska, G. Dresser, L. Deutsch, E. Bassoo, and D.J. Freeman. Relative bioavailability and antioxidant potential of two coenzyme q10 preparations. Ann. Nutr. Metab. 47:16–21 (2003).

    Article  PubMed  CAS  Google Scholar 

  31. D.D. Lasic and D. Papahadjopoulos. Medical applications of liposomes, Elsevier, Amsterdam, 1998.

    Google Scholar 

  32. V. J. Caride and B. L. Zaret. Liposome accumulation in regions of experimental myocardial infarction. Science 198:735–738 (1977).

    Article  PubMed  CAS  Google Scholar 

  33. T. N. Palmer, V. J. Caride, M. A. Caldecourt, J. Twickler, and V. Abdullah. The mechanism of liposome accumulation in infarction. Biochim. Biophys. Acta 797:363–368 (1984).

    PubMed  CAS  Google Scholar 

  34. A. N. Lukyanov, W. C. Hartner, and V. P. Torchilin. Increased accumulation of PEG-PE micelles in the area of experimental myocardial infarction in rabbits. J. Control. Release 94:187–193 (2004).

    Article  PubMed  CAS  Google Scholar 

  35. H. Maeda, J. Wu, T. Sawa, Y. Matsumura, and K. Hori. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release 65:271–284 (2000).

    Article  PubMed  CAS  Google Scholar 

  36. H. Maeda. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul. 41:189–207 (2001).

    Article  PubMed  CAS  Google Scholar 

  37. B. A. Khaw, V. P. Torchilin, I. Vural, and J. Narula. Plug and seal: prevention of hypoxic cardiocyte death by sealing membrane lesions with antimyosin-liposomes. Nat. Med. 1:1195–1198 (1995).

    Article  PubMed  CAS  Google Scholar 

  38. D. D. Verma, T. S. Levchenko, E. A. Bernstein, and V. P. Torchilin. ATP-loaded liposomes effectively protect mechanical functions of the myocardium from global ischemia in an isolated rat heart model. J. Control. Release 108:460–471 (2005).

    Article  PubMed  CAS  Google Scholar 

  39. D. D. Verma, W. C. Hartner, T. S. Levchenko, E. A. Bernstein, and V. P. Torchilin. ATP-loaded liposomes effectively protect the myocardium in rabbits with an acute experimental myocardial infarction. Pharm. Res. 22:2115–2120 (2005).

    Article  PubMed  CAS  Google Scholar 

  40. F. Puisieux, E. Fattal, M. Lahiani, J. Auger, P. Jouannet, P. Couvreur, and J. Delattre. Liposomes, an interesting tool to deliver a bioenergetic substrate (ATP). In vitro and in vivo studies. J. Drug Target. 2:443–448 (1994).

    PubMed  CAS  Google Scholar 

  41. H. Konno, A. F. Matin, Y. Maruo, S. Nakamura, and S. Baba. Liposomal ATP protects the liver from injury during shock. Eur. Surg. Res. 28:140–145 (1996).

    PubMed  CAS  Google Scholar 

  42. Y. Y. Han, L. Huang, E. K. Jackson, R. K. Dubey, D. G. Gillepsie, and J. A. Carcillo. Liposomal atp or NAD+ protects human endothelial cells from energy failure in a cell culture model of sepsis. Res. Commun. Mol. Pathol. Pharmacol. 110:107–116 (2001).

    PubMed  CAS  Google Scholar 

  43. K. Niibori, H. Yokoyama, J. A. Crestanello, and G. J. Whitman. Acute administration of liposomal coenzyme Q10 increases myocardial tissue levels and improves tolerance to ischemia reperfusion injury. J. Surg. Res. 79:141–145 (1998).

    Article  PubMed  CAS  Google Scholar 

  44. K. Niibori, K. P. Wroblewski, H. Yokoyama, J. A. Crestanello, and G. J. Whitman. Bioenergetic effect of liposomal coenzyme Q10 on myocardial ischemia reperfusion injury. Biofactors 9:307–313 (1999).

    PubMed  CAS  Google Scholar 

  45. J. Dzierzkowska, A. Witanowska, G. Ciurzynska, M. Chciuk-Gornicka, M. Jozwicka, M. Gajewski, M. Kurenko-Deptuch, T. W. Deptuch, and S. Maslinski. The influence of intestinal ischaemia on energy balance in the myocardium during ischaemia–reperfusion induced cardiac injury in the rat. Inflamm. Res. 48(Suppl 1):S98–S99 (1999).

    Article  PubMed  CAS  Google Scholar 

  46. J. A. Crestanello, N. M. Doliba, N. M. Doliba, A. M. Babsky, K. Niborii, M. D. Osbakken, and G. J. Whitman. Effect of coenzyme Q10 supplementation on mitochondrial function after myocardial ischemia reperfusion. J. Surg. Res. 102:221–228 (2002).

    Article  PubMed  CAS  Google Scholar 

  47. A. D. Bangham, M. M. Standish, and J. C. Watkins. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol. 13:238–252 (1965).

    Article  PubMed  CAS  Google Scholar 

  48. F. Szoka, Jr. and D. Papahadjopoulos. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc. Natl. Acad. Sci. U. S. A. 75:4194–4198 (1978).

    Article  PubMed  CAS  Google Scholar 

  49. W. Liang, T. S. Levchenko, and V. P. Torchilin. Encapsulation of ATP into liposomes by different methods: optimization of the procedure. J. Microencapsul. 21:251–261 (2004).

    Article  PubMed  CAS  Google Scholar 

  50. Y. Birnbaum, S. L. Hale, and R. A. Kloner. The effect of coenzyme Q10 on infarct size in a rabbit model of ischemia/reperfusion. Cardiovasc. Res. 32:861–868 (1996).

    Article  PubMed  CAS  Google Scholar 

  51. P. Mitchell. Protonmotive redox mechanism of the cytochrome b-c1 complex in the respiratory chain: protonmotive ubiquinone cycle. FEBS Lett. 56:1–6 (1975).

    Article  PubMed  CAS  Google Scholar 

  52. J. A. Crestanello, J. Kamelgard, D. M. Lingle, S. A. Mortensen, M. Rhode, and G. J. Whitman. Elucidation of a tripartite mechanism underlying the improvement in cardiac tolerance to ischemia by coenzyme Q10 pretreatment. J. Thorac. Cardiovasc. Surg. 111:443–450 (1996).

    Article  PubMed  CAS  Google Scholar 

  53. F. Yamamoto, H. Yamamoto, S. Yoshida, H. Ichikawa, A. Takahashi, K. Tanaka, Y. Kosakai, T. Yagihara, and T. Fujita. The effects of several pharmacologic agents upon postischemic recovery. Cardiovasc. Drugs Ther. 5(Suppl 2):301–308 (1991).

    Article  PubMed  Google Scholar 

  54. N. A. Choudhury, S. Sakaguchi, K. Koyano, A. F. Matin, and H. Muro. Free radical injury in skeletal muscle ischemia and reperfusion. J. Surg. Res. 51:392–398 (1991).

    Article  PubMed  CAS  Google Scholar 

  55. S. Chapat, V. Frey, N. Claperon, C. Bouchaud, F. Puisieux, P. Couvreur, P. Rossignol, and J. Delattre. Efficiency of liposomal ATP in cerebral ischemia: bioavailability features. Brain Res. Bull. 26:339–342 (1991).

    Article  PubMed  CAS  Google Scholar 

  56. A. Laham, N. Claperon, J. J. Durussel, E. Fattal, J. Delattre, F. Puisieux, P. Couvreur, and P. Rossignol. Intracarotidal administration of liposomally-entrapped ATP: improved efficiency against experimental brain ischemia. Pharmacol. Res. Commun. 20:699–705 (1988).

    Article  PubMed  CAS  Google Scholar 

  57. F. Mixich and S. Mihailescu. Liposome microcapsules; an experimental model for drug transport across the Blood–Brain Barrier (BBB). In B. de Boer and W. Sutanto (eds.), Drug Transport Across the Blood–Brain Barrier, Harwood, GMBH, Amsterdam, 1997, pp. 201–213.

    Google Scholar 

Download references

Acknowledgement

This study was supported by the NIH grant RO1 HL55519 to Vladimir P. Torchilin. The authors acknowledge the advice and support by Dr. B.-A. Khaw.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir P. Torchilin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verma, D.D., Hartner, W.C., Thakkar, V. et al. Protective Effect of Coenzyme Q10-loaded Liposomes on the Myocardium in Rabbits with an Acute Experimental Myocardial Infarction. Pharm Res 24, 2131–2137 (2007). https://doi.org/10.1007/s11095-007-9334-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9334-0

Key words

Navigation