Skip to main content

Advertisement

Log in

Tumor Characterization with Dynamic Contrast Enhanced Magnetic Resonance Imaging and Biodegradable Macromolecular Contrast Agents in Mice

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To investigate the efficacy of polydisulfide-based biodegradable macromolecular contrast agents of different degradability and molecular weight for tumor characterization based on angiogenesis using dynamic contrast enhanced MRI (DCE-MRI).

Methods

Biodegradable macromolecular MRI contrast agents, Gd-DTPA cystamine copolymers (GDCC) and Gd-DTPA cystine copolymers (GDCP), with molecular weight of 20 and 70 KDa were evaluated for tumor characterization. Gd(DTPA-BMA) and a prototype of macromolecular contrast agent, albumin-(Gd-DTPA), were used as controls. The DCE-MRI studies were performed in nude mice bearing MDA PCa 2b and PC-3 human prostate tumor xenografts. Tumor angiogenic kinetic parameters including endothelium transfer coefficient (Ktrans) and fractional tumor plasma volume (fPV) were calculated from the DCE-MRI data using a two-compartment model and compared between the two different tumor models for each contrast agent.

Results

There was no significant difference in the fPV values between two tumor models estimated with the same agent except for GDCC-70. The Ktrans values in both tumor models decreased with the increase of molecular weight of contrast agents. With the same high molecular weight (70 KDa), GDCC-70 showed a higher Ktrans values than GDCP-70 due to high degradability of the former in both tumor models (p < 0.05). The Ktrans values of MDA PCa 2b tumors were significantly higher than those of PC-3 tumors estimated by Gd(DTPA-BMA), GDCC-20, GDCC-70, GDCP-70, and albumin-(Gd-DTPA) (p < 0.05).

Conclusions

The polydisulfide-based biodegradable macromolecular MRI contrast agents are promising in tumor characterization and differentiation with dynamic contrast enhanced MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ. Cancer statistics. CA Cancer J Clin. 2008;58:71–96

    Article  PubMed  Google Scholar 

  2. Gossmann A, Okuhata Y, Shames DM, et al. Prostate cancer tumor grade differentiation with dynamic contrast-enhanced MR imaging in the rat: comparison of macromolecular and small-molecular contrast media-preliminary experience. Radiology. 1999;213:265–72.

    PubMed  CAS  Google Scholar 

  3. Quinlan DM, Partin AW, Walsh PC. Can aggressive prostatic carcinomas be identified and can their natural history be altered by treatment? Urology. 1995;46:77–82.

    Article  PubMed  CAS  Google Scholar 

  4. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature. 2000;407:242–8.

    Article  PubMed  CAS  Google Scholar 

  5. Ferrara N. VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer. 2002;2:795–803.

    Article  PubMed  CAS  Google Scholar 

  6. Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma. N Engl J Med. 1991;324:1–8.

    PubMed  CAS  Google Scholar 

  7. Aref M, Chaudhari AR, Bailey KL, Aref S, Wiener EC. Comparison of tumor histology to dynamic contrast enhanced magnetic resonance imaging-based physiological estimates. Magn Reson Imaging. 2008;26:1279–93.

    Article  PubMed  Google Scholar 

  8. Su MY, et al. Correlation of dynamic contrast enhanced MRI parameters with microvessel density and VEGF for assessment of angiogenesis in breast cancer. J Magn Reson Imaging. 2003;18:467–77.

    Article  PubMed  Google Scholar 

  9. Fujimoto K, et al. Small peripheral pulmonary carcinomas evaluated with dynamic MR imaging: correlation with tumor vascularity and prognosis. Radiology. 2003;227:786–93.

    Article  PubMed  Google Scholar 

  10. Raatschen HJ, Simon GH, Fu Y, Sennino B, Shames DM, Wendland MF, et al. Vascular permeability during antiangiogenesis treatment: MR imaging assay Results as biomarker for subsequent tumor growth in rats. Radiology. 2008;247:391–9.

    Article  PubMed  Google Scholar 

  11. Daldrup H, Shames DM, Wendland M, et al. Correlation of dynamic contrast-enhanced MR imaging with histologic tumor grade: comparison of macromolecular and small-molecular contrast media. AJR Am J Roentgenol. 1998;171:941–9.

    PubMed  CAS  Google Scholar 

  12. Tofts PS, Brix G, Buckley DL, et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging. 1999;10:223–32.

    Article  PubMed  CAS  Google Scholar 

  13. Jordan BF, Runquist M, Raghunand N, et al. The thioredoxin-1 inhibitor 1-methylpropyl 2-imidazolyl disulfide (PX-12) decreases vascular permeability in tumor xenografts monitored by dynamic contrast enhanced magnetic resonance imaging. Clin Cancer Res. 2005;11:529–36.

    PubMed  CAS  Google Scholar 

  14. Padhani AR. Dynamic contrast-enhanced MRI in clinical oncology: current status and future directions. J Magn Reson Imaging. 2002;16:407–22.

    Article  PubMed  Google Scholar 

  15. Roberts TP, Turetschek K, Preda A, et al. Tumor microvascular changes to anti-angiogenic treatment assessed by MR contrast media of different molecular weights. Acad Radiol. 2002;9:S511–3.

    Article  PubMed  Google Scholar 

  16. Brasch RC. New directions in the development of MR imaging contrast media. Radiology. 1992;183:1–11.

    PubMed  CAS  Google Scholar 

  17. van Dijke CF, Brasch RC, Roberts TP, et al. Mammary carcinoma model: correlation of macromolecular contrast-enhanced MR imaging characterizations of tumor microvasculature and histologic capillary density. Radiology. 1996;198:813–8.

    PubMed  Google Scholar 

  18. de Lussanet QG, Langereis S, Beets-Tan RG, et al. Dynamic contrast-enhanced MR imaging kinetic parameters and molecular weight of dendritic contrast agents in tumor angiogenesis in mice. Radiology. 2005;235:65–72.

    Article  PubMed  Google Scholar 

  19. Desser TS, Rubin DL, Muller HH, et al. Dynamics of tumor imaging with Gd-DTPA-polyethylene glycol polymers: dependence on molecular weight. J Magn Reson Imaging. 1994;4:467–72.

    Article  PubMed  CAS  Google Scholar 

  20. Bogdanov AA Jr, Weissleder R, Frank HW, et al. A new macromolecule as a contrast agent for MR angiography: preparation, properties, and animal studies. Radiology. 1993;187:701–6.

    PubMed  CAS  Google Scholar 

  21. Su MY, Wang Z, Carpenter PM, Lao X, Muhler A, Nalcioglu O. Characterization of N-ethyl-N-nitrosourea-induced malignant and benign breast tumors in rats by using three MR contrast agents. J. Magn. Reson. Imaging. 1999;9:177–86.

    Article  PubMed  CAS  Google Scholar 

  22. Su MY, Muhler A, Lao X, Nalcioglu O. Tumor characterization with dynamic contrast-enhanced MRI using MR contrast agents of various molecular weights. Magn Reson Med. 1998;39:259–69.

    Article  PubMed  CAS  Google Scholar 

  23. Feng Y, Zong Y, Ke T, Jeong EK, Parker DL, Lu ZR. Pharmacokinetics, biodistribution and contrast enhanced MR blood pool imaging of Gd-DTPA cystine copolymers and Gd-DTPA cystine diethyl ester copolymers in a rat model. Pharm Res. 2006;23:1736–42.

    Article  PubMed  CAS  Google Scholar 

  24. Preda A, van Vliet M, Krestin GP, Brasch RC, van Dijke CF. Magnetic resonance macromolecular agents for monitoring tumor microvessels and angiogenesis inhibition. Invest Radiol. 2006;41:325–31.

    Article  PubMed  Google Scholar 

  25. Lu ZR, Parker DL, Goodrich KC, Wang X, Dalle JG, Buswell HR. Extracellular biodegradable macromolecular gadolinium(III) complexes for MRI. Magn Reson Med. 2004;51:27–34.

    Article  PubMed  CAS  Google Scholar 

  26. Zong Y, Wang X, Goodrich KC, Mohs AM, Parker DL, Lu ZR. Contrast-enhanced MRI with new biodegradable macromolecular Gd(III) complexes in tumor-bearing mice. Magn Reson Med. 2005;53:835–42.

    Article  PubMed  CAS  Google Scholar 

  27. Wang X, Feng Y, Ke T, Schabel M, Lu ZR. Pharmacokinetics and tissue retention of (Gd-DTPA)-cystamine copolymers, a biodegradable macromolecular magnetic resonance imaging contrast agent. Pharm Res. 2005;22:596–602.

    Article  PubMed  CAS  Google Scholar 

  28. Feng Y, Jeong E-K, Mohs A, Emerson L, Lu Z-R. Characterization of tumor angiogenesis with dynamic contrast enhanced magnetic resonance imaging and biodegradable macromolecular contrast agents in mice. Magn Reson Med. 2008;60:1347–52.

    Article  PubMed  Google Scholar 

  29. Ogan MD, Schmiedl U, Moseley ME, Grodd W, Paajanen H, Brasch RC. Albumin labeled with Gd-DTPA. An intravascular contrast-enhancing agent for magnetic resonance blood pool imaging: preparation and characterization. Invest Radiol. 1987;22:665–71.

    Article  PubMed  CAS  Google Scholar 

  30. Navone NM, Olive M, Ozen M, et al. Establishment of two human prostate cancer cell lines derived from a single bone metastasis. Clin Cancer Res. 1997;3:2493–500.

    PubMed  CAS  Google Scholar 

  31. Kim YR, Savellano MD, Savellano DH, Weissleder R, Bogdanov A Jr. Measurement of tumor interstitial volume fraction: method and implication for drug delivery. Magn Reson Med. 2004;52:485–94.

    Article  PubMed  CAS  Google Scholar 

  32. Kim YR, Savellano MD, Weissleder R, Bogdanov A Jr. Steady-state and dynamic contrast MR imaging of human prostate cancer xenograft tumors: a comparative study. Technol Cancer Res Treat. 2002;1:489–95.

    PubMed  Google Scholar 

  33. Kaighn ME, Narayan KS, Ohnuki Y, Lechner JF, Jones LW. Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest Urol. 1979;17:16–23.

    PubMed  CAS  Google Scholar 

  34. Plonowski A, Nagy A, Schally AV, Sun B, Groot K, Halmos G. In vivo inhibition of PC-3 human androgen-independent prostate cancer by a targeted cytotoxic bombesin analogue, AN-215. Int J Cancer. 2000;88:652–7.

    Article  PubMed  CAS  Google Scholar 

  35. Shames DM, Kuwatsuru R, Vexler V, Muhler A, Brasch RC. Measurement of capillary permeability to macromolecules by dynamic magnetic resonance imaging: a quantitative noninvasive technique. Magn Reson Med. 1993;29:616–22.

    Article  PubMed  CAS  Google Scholar 

  36. Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma. N Engl J Med. 1991;324:1–8.

    PubMed  CAS  Google Scholar 

  37. Kobayashi H, Reijnders K, English S, Yordanov AT, Milenic DE, Sowers AL, et al. Application of a macromolecular contrast agent for detection of alterations of tumor vessel permeability induced by radiation. Clin Cancer Res. 2004;10:7712–20.

    Article  PubMed  CAS  Google Scholar 

  38. Navone NM, Logothetis CJ, von Eschenbach AC, Troncoso P. Model systems of prostate cancer: uses and limitations. Cancer Metastasis Rev. 1999;17:361–71.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Yong-En Sun for his technique in the tail vein catheterization and Melody Johnson for the operation of MRI scanner. This work is supported in part by the NIH grant R01 EB000489.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Rong Lu.

Additional information

Xueming Wu and Yi Feng made equal contribution in this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Feng, Y., Jeong, EK. et al. Tumor Characterization with Dynamic Contrast Enhanced Magnetic Resonance Imaging and Biodegradable Macromolecular Contrast Agents in Mice. Pharm Res 26, 2202–2208 (2009). https://doi.org/10.1007/s11095-009-9935-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9935-x

Key Words

Navigation