Skip to main content

Advertisement

Log in

Application of Screening Methods, Shape Signatures and Engineered Biosensors in Early Drug Discovery Process

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

In this study, two unreported estrogen antagonists were identified using a combination of computational screening and a simple bacterial estrogen sensor.

Methods

Molecules here presented were initially part of a group obtained from a library of over a half million chemical compounds, using the Shape Signatures method. The structures within this group were then clustered and compared to known antagonists based on their physico-chemical parameters, and possible binding modes of the compounds to the Estrogen Receptor α (ERα) were analyzed. Finally, thirteen candidate compounds were purchased, and two of them were shown to behave as potential subtype-selective estrogen antagonists using a set of bacterial estrogen biosensors, which included sensors for ERα, ERβ, and a negative control thyroid hormone β biosensor. These activities were then analyzed using an ELISA assay against activated ERα in human MCF-7 cell extract.

Results

Two new estrogen receptor antagonists were detected using in silico Shape Signatures method with an engineered subtype-selective bacterial estrogen biosensor and commercially available ELISA assay. Additional thyroid biosensor control experiments confirmed no compounds interacted with human thyroid receptor β.

Conclusions

This work demonstrates an effective combination of computational analysis and simple bacterial screens for rapid identification of potential hormone-like therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

BPA:

Bisphenol A

COMFA:

Comparative molecular field analysis

DMSO:

Dimethylsulfoxide

ELISA:

Enzyme-linked immunosorbent assay

ERs:

Estrogen receptors

E2:

17-β-estradiol

GOLD:

Genetic optimization for ligand docking algorithm

HBA:

Number of hydrogen bonding acceptors

HBD:

Number of hydrogen bonding donors

HRP:

Horseradish peroxide

LB:

Luria-Bertani

LBD:

Ligand binding domain

logp:

Octanol-water partition coefficient

MOE:

Molecular operation environment

MEP:

Molecular electrostatic potential

MW:

Molecular weights

NCI:

National cancer institute

NHR:

Nuclear hormone receptors

NSC:

National service center

OD:

Optical density

pMIT::ER:

plasmid MBP (maltose-binding protein tag) -Intein-TS (thymidylate synthase)::Estrogen Receptor

pMIT::TR:

plasmid MBP (maltose-binding protein tag) -Intein-TS (thymidylate synthase)::Thyroid Receptor

PSA:

Polar surface area (Å2)

QSAR:

Quantitative structure-activity relationship

RB:

Number of rotatable bonds

SERMs:

Selective estrogen receptor modulators

TTM:

Medium which contain -Thy medium supplemented with 10 μg/ml trimethoprim and 50 μg/ml thymine

UPGMA:

Unweighted pair group method with arithmetic means

+THY:

A thymine-rich medium; used as a positive control

-THY:

A thymine-free medium; used as a negative control

REFERENCES

  1. Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA. Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci U S A. 1996;93:5925–30.

    Article  PubMed  CAS  Google Scholar 

  2. Manas ES, Unwalla RJ, Xu ZB, Malamas MS, Miller CP, Harris HA, et al. Structure-based design of estrogen receptor-beta selective ligands. J Am Chem Soc. 2004;126:15106–19.

    Article  PubMed  CAS  Google Scholar 

  3. Pike AC, Brzozowski AM, Hubbard RE, Bonn T, Thorsell AG, Engstrom O, et al. Structure of the ligand-binding domain of oestrogen receptor beta in the presence of a partial agonist and a full antagonist. EMBO J. 1999;18:4608–18.

    Article  PubMed  CAS  Google Scholar 

  4. Tremblay A, Tremblay GB, Labrie C, Labrie F, Giguere V. EM-800, a novel antiestrogen, acts as a pure antagonist of the transcriptional functions of estrogen receptors alpha and beta. Endocrinology. 1998;139:111–8.

    Article  PubMed  CAS  Google Scholar 

  5. McDonnell DP. The molecular pharmacology of estrogen receptor modulators: implications for the treatment of breast cancer. Clin Cancer Res. 2005;11:871s–7s.

    PubMed  CAS  Google Scholar 

  6. Jensen EV, Jordan VC. The estrogen receptor: a model for molecular medicine. Clin Cancer Res. 2003;9:1980–9.

    PubMed  CAS  Google Scholar 

  7. Shiau AK, Barstad D, Radek JT, Meyers MJ, Nettles KW, Katzenellenbogen BS, et al. Structural characterization of a subtype-selective ligand reveals a novel mode of estrogen receptor antagonism. Nat Struct Biol. 2002;9:359–64.

    PubMed  CAS  Google Scholar 

  8. Liu H, Lee ES, Deb Los Reyes A, Zapf JW, Jordan VC. Silencing and reactivation of the selective estrogen receptor modulator-estrogen receptor alpha complex. Cancer Res. 2001;61:3632–9.

    PubMed  CAS  Google Scholar 

  9. Grese TA, Sluka JP, Bryant HU, Cullinan GJ, Glasebrook AL, Jones CD, et al. Molecular determinants of tissue selectivity in estrogen receptor modulators. Proc Natl Acad Sci U S A. 1997;94:14105–10.

    Article  PubMed  CAS  Google Scholar 

  10. Gauthier S, Caron B, Cloutier J, Dory YL, Favre A, Larouche D, et al. (S)-(+)-4-[7-(2, 2-dimethyl-1-oxopropoxy)-4-methyl-2-[4-[2-(1-piperidinyl)- ethoxy]phenyl]-2H–1-benzopyran-3-yl]-phenyl 2, 2-dimethylpropanoate (EM-800): a highly potent, specific, and orally active nonsteroidal antiestrogen. J Med Chem. 1997;40:2117–22.

    Article  PubMed  CAS  Google Scholar 

  11. Bentrem D, Dardes R, Liu H, MacGregor-Schafer J, Zapf J, Jordan V. Molecular mechanism of action at estrogen receptor alpha of a new clinically relevant antiestrogen (GW7604) related to tamoxifen. Endocrinology. 2001;142:838–46.

    Article  PubMed  CAS  Google Scholar 

  12. Fan M, Rickert EL, Chen L, Aftab SA, Nephew KP, Weatherman RV. Characterization of molecular and structural determinants of selective estrogen receptor downregulators. Breast Cancer Res Treat. 2007;103:37–44.

    Article  PubMed  CAS  Google Scholar 

  13. Zauhar RJ, Moyna G, Tian L, Li Z, Welsh WJ. Shape signatures: a new approach to computer-aided ligand- and receptor-based drug design. J Med Chem. 2003;46:5674–90.

    Article  PubMed  CAS  Google Scholar 

  14. Irwin JJ, Shoichet BK. ZINC—a free database of commercially available compounds for virtual screening. J Chem Inf Model. 2005;45:177–82.

    Article  PubMed  CAS  Google Scholar 

  15. Nagarajan K, Zauhar R, Welsh WJ. Enrichment of ligands for the serotonin receptor using the Shape Signatures approach. J Chem Inf Model. 2005;45:49–57.

    Article  PubMed  CAS  Google Scholar 

  16. GOLD. Cambridge, UK: Cambridge crystallographic data centre; 2004.

  17. SILVER. Cambridge, UK: Cambridge crystallographic data centre; 2004.

  18. Jones G, Willett P, Glen RC. Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J Mol Biol. 1995;245:43–53.

    Article  PubMed  CAS  Google Scholar 

  19. Jones G, Willett P, Glen RC, Leach AR, Taylor R. Development and validation of a genetic algorithm for flexible docking. J Mol Biol. 1997;267:727–48.

    Article  PubMed  CAS  Google Scholar 

  20. Nissink JW, Murray C, Hartshorn M, Verdonk ML, Cole JC, Taylor R. A new test set for validating predictions of protein-ligand interaction. Proteins. 2002;49:457–71.

    Article  PubMed  CAS  Google Scholar 

  21. Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD. Improved protein-ligand docking using GOLD. Proteins. 2003;52:609–23.

    Article  PubMed  CAS  Google Scholar 

  22. Annamala MK, Inampudi KK, Guruprasad L. Docking of phosphonate and trehalose analog inhibitors into M. tuberculosis mycolyltransferase Ag85C: Comparison of the two scoring fitness functions GoldScore and ChemScore, in the GOLD software. Bioinformation. 2007;1:339–50.

    PubMed  Google Scholar 

  23. Baxter CA, Murray CW, Clark DE, Westhead DR, Eldridge MD. Flexible docking using Tabu search and an empirical estimate of binding affinity. Proteins. 1998;33:367–82.

    Article  PubMed  CAS  Google Scholar 

  24. Skretas G, Wood DW. Rapid detection of subtype-selective nuclear hormone receptor binding with bacterial genetic selection. Appl Environ Microbiol. 2005;71:8995–7.

    Article  PubMed  CAS  Google Scholar 

  25. Skretas G, Wood DW. A bacterial biosensor of endocrine modulators. J Mol Biol. 2005;349:464–74.

    Article  PubMed  CAS  Google Scholar 

  26. Skretas G, Meligova AK, Villalonga-Barber C, Mitsiou DJ, Alexis MN, Micha-Screttas M, et al. Engineered chimeric enzymes as tools for drug discovery: generating reliable bacterial screens for the detection, discovery, and assessment of estrogen receptor modulators. J Am Chem Soc. 2007;129:8443–57.

    Article  PubMed  CAS  Google Scholar 

  27. Meek PJ, Liu Z, Tian L, Wang CY, Welsh WJ, Zauhar RJ. Shape Signatures: speeding up computer aided drug discovery. Drug Discov Today. 2006;11:895–904.

    Article  PubMed  CAS  Google Scholar 

  28. Labrie F, Labrie C, Belanger A, Simard J, Gauthier S, Luu-The V, et al. EM-652 (SCH 57068), a third generation SERM acting as pure antiestrogen in the mammary gland and endometrium. J Steroid Biochem Mol Biol. 1999;69:51–84.

    Article  PubMed  CAS  Google Scholar 

  29. SPSS. Chicago, IL: SPSS; 2005.

  30. Grimm LG, Yarnold PR. Reading and understanding more multivariate statistics. Washington, DC: American Psychological Association; 2000.

    Google Scholar 

  31. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The protein data bank. Nucleic Acids Res. 2000;28:235–42.

    Article  PubMed  CAS  Google Scholar 

  32. Shiau AK, Barstad D, Loria PM, Cheng L, Kushner PJ, Agard DA, et al. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell. 1998;95:927–37.

    Article  PubMed  CAS  Google Scholar 

  33. SYBYL. St. Louis, MO: Tripos Inc; 2001.

  34. Levai A, Bognár R. Oxazepines and thiazepines, III. Synthesis of 2,3-dihydro-2,4-diphenyl-1,5-benzothiazepines by the reaction of 2-aminothiophenol with chalcones substituted in ring A. Acta Chim Acad Sci Hung. 1977;92:415–9.

    CAS  Google Scholar 

  35. Sharma G, Raj K, Chakraborti AK. Fluoroboric acid adsorbed on silica-gel (HBF4-SiO2) as a new, highly efficient and reusable heterogeneous catalyst for thia-Michael addition to α, β-unsaturated carbonyl compounds. Tetrahedron Lett. 2008;49:4272–5.

    Article  CAS  Google Scholar 

  36. Fang H, Tong W, Shi LM, Blair R, Perkins R, Branham W, et al. Structure-activity relationships for a large diverse set of natural, synthetic, and environmental estrogens. Chem Res Toxicol. 2001;14:280–94.

    Article  PubMed  CAS  Google Scholar 

  37. Wang CY, Ai N, Arora S, Erenrich E, Nagarajan K, Zauhar R, et al. Identification of previously unrecognized antiestrogenic chemicals using a novel virtual screening approach. Chem Res Toxicol. 2006;19:1595–601.

    Article  PubMed  CAS  Google Scholar 

  38. Ambrose Amin E, Welsh WJ. Three-dimensional quantitative structure-activity relationship (3D-QSAR) models for a novel class of piperazine-based stromelysin-1 (MMP-3) inhibitors: applying a “divide and conquer” strategy. J Med Chem. 2001;44:3849–55.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

This work was partially supported by NIH grant 1R21ES16630.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David W. Wood or Randy J. Zauhar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartman, I., Gillies, A.R., Arora, S. et al. Application of Screening Methods, Shape Signatures and Engineered Biosensors in Early Drug Discovery Process. Pharm Res 26, 2247–2258 (2009). https://doi.org/10.1007/s11095-009-9941-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9941-z

KEY WORDS

Navigation