Skip to main content
Log in

Analysis of Catharanthus roseus alkaloids by HPLC

  • Review Paper
  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Catharanthus roseus is a medicinal plant from which secondary metabolites used in chemotherapy to treat diverse cancers are extracted. The well known high value metabolites vincristine and vinblastine are just 2 of 130 alkaloids that can be found in C. roseus. However, only few (∼11) of this high number of chemical entities are frequently analyzed and even fewer (∼8) are available commercially. For more than 30 years, different analytical techniques have been developed to isolate and identify C. roseus metabolites, and then allowing revealing the therapeutic potential of C. roseus metabolites. Among few approaches, high performance liquid chromatography (HPLC) technique is still widely used for the separation and analysis of secondary metabolites such as those from C. roseus. This article thus reviews the most recent developments in HPLC analysis of alkaloids from C. roseus. Diverse considerations that are crucial to the efficiency of secondary metabolites separation and identification steps, such as biomass manipulation, extraction phase and protocols, HPLC separation and analysis protocols are reviewed in details. Examples of spectra obtained using the most common detectors are also shown and suggestions are made on how to proceed in developing efficient separation and identification methods at the analytical and semi-preparative scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

HPLC:

high performance liquid chromatography

TLC:

thin layer chromatography

SPE:

solid phase extraction

PDA:

photo diode array

FW:

fresh weight

DW:

dry weight

MS:

mass spectrometry

TIA:

terpene indole alkaloid

TCA:

trichloroaceticacid

TEA:

triethylamine

TFA:

trifluoroacetic acid

NMR:

nuclear magnetic resonance

CD:

circular dichroism

References

  • Abel U, Koch C, Speitling M, Hansske FG (2002) Modern methods to produce natural-product libraries. Curr Opin Chem Biol 6:453–458

    PubMed  CAS  Google Scholar 

  • Aerts RJ, Gisi D, Decarolis E, Deluca V, Baumann TW (1994) Methyl jasmonate vapor increases the developmentally controlled synthesis of alkaloids in Catharanthus and Cinchona seedlings. Plant J 5:635–643

    CAS  Google Scholar 

  • Annesley TM (2003) Ion suppression in mass spectrometry. Clin Chem 49:1041–1044

    PubMed  CAS  Google Scholar 

  • Antignac JP, Brosseaud A, Gaudin-Hirret I, Andre F, Bizec BL (2005) Analytical strategies for the direct mass spectrometric analysis of steroid and corticosteroid phase II metabolites. Steroids. Web released

  • Asada M, Shuler ML (1989) Stimulation of ajmalicine production and excretion from Catharanthus roseus: effects of adsorption in situ, elicitors and alginate immobilization. Appl Microbiol Biotechnol 30:475–481

    CAS  Google Scholar 

  • Auriola S, Naaranlati T, Lapinjoki SP (1991) Determination of Catharanthus roseus alkaloids by high-performance liquid-chromatography–isotope-dilution thermospray mass spectrometry. J Chromatogr 554:227–231

    CAS  Google Scholar 

  • Auriola S, Ranta VP, Naaranlahti T, Lapinjoki SP (1989) Thermospray liquid-chromatographic mass-spectrometric analysis of Catharanthus alkaloids. J Chromatogr 474:181–185

    Google Scholar 

  • Balagué C, Wilson G (1982) Growth and alkaloid biosynthesis by cell suspensions of Catharanthus roseus in a chemostat under sucrose and phosphate limiting conditions. PhysiolVeg 20:515–522

    Google Scholar 

  • Barthe L, Ribet JP, Pelissou M, Degude MJ, Fahy J, Duflos A (2002) Optimization of the separation of vinca alkaloids by nonaqueous capillary electrophoresis. J Chromatogr A 968:241–250

    PubMed  CAS  Google Scholar 

  • Bhadra R, Shanks JV (1997) Transient studies of nutrient uptake, growth, and indole alkaloid accumulation in heterotrophic cultures of hairy roots of Catharanthus roseus. Biotechnol Bioeng 55:527–534

    CAS  PubMed  Google Scholar 

  • Bhadra R, Vani S, Shanks JV (1993) Production of indole alkaloids by selected hairy root lines of Catharanthus roseus. Biotechnol Bioeng 41:581–592

    CAS  PubMed  Google Scholar 

  • Blom TJM, Sierra M, Vanvliet TB, Frankevandijk MEI, Dekoning P, Vaniren F, Verpoorte R, Libbenga KR (1991) Uptake and accumulation of ajmalicine into isolated vacuoles of cultured-cells of Catharanthus roseus (L.) G. Don and its conversion into serpentine. Planta 183:170–177

    CAS  Google Scholar 

  • Bobzin SC, Yang S, Kasten TP (2000) Application of liquid chromatography–nuclear magnetic resonance spectroscopy to the identification of natural products. J Chromatogr B 748:259–267

    CAS  Google Scholar 

  • Bringmann G, Messer K, Wohlfarth M, Kraus J, Dumbuya K, Rückert M (1999) HPLC-CD on-line coupling in combination with HPLC–NMR and HPLC–MS/MS for the determination of the full absolute stereostructure of new metabolites in plant extracts. Anal Chem 71:2678–2686

    CAS  Google Scholar 

  • Bringmann G, Wohlfarth M, Heubes M (2000) Observation of exchangeable protons by high-performance liquid chromatography–nuclear magnetic resonance spectroscopy and high-performance liquid chromatography–electrospray ionization mass spectrometry: a useful tool for the hyphenated analysis of natural products. J Chromatogr A 904:243–249

    PubMed  CAS  Google Scholar 

  • Bringmann G, Wohlfarth M, Rischer H, Schlauer J, Reto B (2002) Extract screening by HPLC coupled to MS-MS, NMR, and CD: a dimeric and three monomeric naphthylisoquinoline alkaloids from Ancistrocladus griffithii. Phytochemistry 61:195–204

    PubMed  CAS  Google Scholar 

  • Byun SY, Pedersen H (1994) 2-Phase airlift fermenter operation with elicitation for the enhanced production of benzophenanthridine alkaloids in cell-suspensions of Eschscholtzia californica. Biotechnol Bioeng 44:14–20

    CAS  PubMed  Google Scholar 

  • Capell T, Christou P (2004) Progress in plant metabolic engineering. Curr Opin Biotechnol 15:148–154

    PubMed  CAS  Google Scholar 

  • Chen X, Yi C, Yang X, Wang X (2004) Liquid chromatography of active principles in Sophora flavescens root. J Chromatogr B 812:149–163

    CAS  Google Scholar 

  • Choi YH, Yoo KP, Kim J (2002) Supercritical fluid extraction and liquid chromatography–electrospray mass analysis of vinblastine from Catharanthus roseus. Chem Pharm Bulletin 50:1294–1296

    PubMed  CAS  Google Scholar 

  • Chu IH, Bodnar JA, Bowman RN, White EL (1997) Determination of vincristine and vinblastine in Catharanthus roseus plants by high performance liquid chromatography electrospray ionization mass spectrometry. J Chromatogr Relat Technol 20:1159–1174

    CAS  Google Scholar 

  • Chu IH, Bodnar JA, White EL, Bowman RN (1996) Quantification of vincristine and vinblastine in Catharanthus roseus plants by capillary zone electrophoresis. J Chromatogr A 755:281–288

    CAS  Google Scholar 

  • Collins-Pavao N, Chin CK (1996) Taxol partitioning in two-phase plant cell cultures of Taxus brevifolia. J Biotechnol 49:95–100

    CAS  Google Scholar 

  • Collu G, Bink HHJ, Moreno PRH, Van Der Heijden R, Verpoorte R (1999) Determination of the activity of the cytochrome p450 enzyme geraniol 10-hydroxylase in plants by high-performance liquid chromatography. Phytochem Anal 10:314–318

    CAS  Google Scholar 

  • Contin A, Van Der Heijden R, Lefeber AWM, Verpoorte R (1998) The iridoid glucoside secologanin is derived from the novel triose phosphate/pyruvate pathway in a Catharanthus roseus cell culture. FEBS Lett 434:413–416

    PubMed  CAS  Google Scholar 

  • Dagnino D, Schripsema J, Verpoorte R (1995) Terpenoid indole alkaloid biosynthesis and enzyme-activities in two cell-lines of Tabernaemontana divaricata. Phytochemistry 39:341–349

    CAS  Google Scholar 

  • Dagnino D, Schripsema J, Verpoorte R (1996) Analysis of several iridoid and indole precursors of terpenoid indole alkaloids with a single HPLC run. Planta Med 62:278–280

    PubMed  CAS  Google Scholar 

  • De Luca V, Balsevich J, Tyler RT, Eilert U, Panchuk BD, Kurz WGW (1986) Biosynthesis of indole alkaloids: developmental regulation of the biosynthetic pathway from tabersonine to vindoline in Catharanthus roseus. J Plant Physiol 125:147–156

    Google Scholar 

  • De Luca V, Fernandez JA, Campbell D, Kurz WGW (1988) Developmental regulation of enzymes of indole alkaloid biosynthesis in Catharanthus roseus. Plant Physiol 86:447–450

    Article  PubMed  Google Scholar 

  • De Luca V, Laflamme P (2001) The expanding universe of alkaloid biosynthesis. Curr Opin Plant Biol 4:225–233

    PubMed  Google Scholar 

  • De Luca V, St-Pierre B (2000) The cell and developmental biology of alkaloid biosynthesis. Trends Plant Sci 5:168–173

    PubMed  Google Scholar 

  • Drager B (2002) Analysis of tropane and related alkaloids. J Chromatogr A 978:1–35

    PubMed  CAS  Google Scholar 

  • Dutta A, Batra J, Pandey-Rai S, Singh D, Kumar S, Sen J (2005) Expression of terpenoid indole alkaloid biosynthetic pathway genes corresponds to accumulation of related alkaloids in Catharanthus roseus (L) G Don. Planta 220:376–383

    PubMed  CAS  Google Scholar 

  • El-Sayed M, Choi YH, Frederich M, Roytrakul S, Verpoorte R (2004) Alkaloid accumulation in Catharanthus roseus cell suspension cultures fed with stemmadenine. Biotechnol Lett 26:793–798

    PubMed  CAS  Google Scholar 

  • Facchini PJ (2001) Alkaloid biosynthesis in plants: biochemistry, cell biology, molecular regulation and metabolic engineering applications. Annu Rev Plant Physiol Plant Mol Biol 52:29–66

    PubMed  CAS  Google Scholar 

  • Fahy J, Du Boullay VT, Bigg DCH (2002) New method of synthesis of vinca alkaloid derivatives. Bioorg Med Chem Lett 12:505–507

    PubMed  CAS  Google Scholar 

  • Favali MA, Musetti R, Benvenuti S, Bianchi A, Pressacco L (2004) Catharanthus roseus L. plants and explants infected with phytoplasmas: alkaloid production and structural observations. Protoplasma 223:45–51

    PubMed  CAS  Google Scholar 

  • Gorog S, Herenyi B, Jovanovics K (1977) High-performance liquid chromatography of Catharanthus alkaloids. J Chromatogr A 139:203–206

    CAS  Google Scholar 

  • Gustavsson SA, Samskog J, Markides KE, Langström B (2001) Studies of signal suppression in liquid chromatography–electrospray ionization mass spectrometry using volatile ion-pairing reagents. J Chromatogr A 937:41–47

    PubMed  CAS  Google Scholar 

  • Hendriks MMWB, Cruz-Juarez L, Bont DD, Hall RD (2005) Preprocessing and exploratory analysis of chromatographic profiles of plant extracts. Anal Chim Acta 545:53–64

    CAS  Google Scholar 

  • Hisiger S, Jolicoeur M (2005) Plant cell culture monitoring using an in situ multiwavelength fluorescence probe. Biotechnol Prog 21:580–589

    PubMed  CAS  Google Scholar 

  • Houghton PJ (2002) Chromatography of the chromone and flavonoid alkaloids. J Chromatogr A 967:75–84

    PubMed  CAS  Google Scholar 

  • Hughes EH, Hong SB, Gibson SI, Shanks JV, San KY (2004) Expression of a feedback-resistant anthranilate synthase in Catharanthus roseus hairy roots provides evidence for tight regulation of terpenoid indole alkaloid levels. Biotechnol Bioeng 86:718–727

    PubMed  CAS  Google Scholar 

  • Ingkaninan K, De Best CM, Van Der Heijden R, Hofte AJP, Karabatak B, Irth H, Tjaden UR, Van Der Greef J, Verpoorte R (2000) High-performance liquid chromatography with on-line coupled UV, mass spectrometric and biochemical detection for identification of acetylcholinesterase inhibitors from natural products. J Chromatogr A 872:61–73

    PubMed  CAS  Google Scholar 

  • Jossang A, Fodor P, Bodo B (1998) A new structural class of bisindole alkaloids from the seeds of Catharanthus roseus: vingramine and methylvingramine. J Org Chem 63:7162–7167

    PubMed  CAS  Google Scholar 

  • Klyushnichenko VE, Yakimov SA, Tuzova TP, Syagailo YV, Kuzovkina IN, Wulfson AN, Miroshnikov AI (1995) Determination of indole alkaloids from R. serpentina and R. vomitoria by high-performance liquid-chromatography and high-performance thin-layer chromatography. J Chromatogr A 704:357–362

    CAS  Google Scholar 

  • Kruczynski A, Hill BT (2001) Vinflunine, the latest Vinca alkaloid in clinical development: a review of its preclinical anticancer properties. Oncol/Hematol 40:159–173

    CAS  Google Scholar 

  • Kutney JP, Choi LSL, Kolodziejczyk P, Sleigh SK, Stuart KL, Worth BR, Kurz WGW, Chatson KB, Constabel F (1980) Alkaloid production in Catharanthus roseus cell cultures: isolation and characterization of alkaloids from one cell line. Phytochemistry 19:2589–2595

    Google Scholar 

  • Laflamme P, St-Pierre B, De Luca V (2001) Molecular and biochemical analysis of a madagascar periwinkle root-specific minovincinine-19-hydroxy-O-acetyltransferase. Plant Physiol 125:189–198

    PubMed  CAS  Google Scholar 

  • Law B, Temesi D (2000) Factors to consider in the development of generic bioanalytical high-performance liquid chromatographic–mass spectrometric methods to support drug discovery. J Chromatogr B 748:21–30

    CAS  Google Scholar 

  • Lee CWT, Shuler ML (2000) The effect of inoculum density and conditioned medium on the production of ajmalicine and catharanthine from immobilized Catharanthus roseus cells. Biotechnol Bioeng 67:61–71

    PubMed  CAS  Google Scholar 

  • Lee-Parsons CWT, Erturk S, Tengtrakool J (2004) Enhancement of ajmalicine production in Catharanthus roseus cell cultures with methyl jasmonate is dependent on timing and dosage of elicitation. Biotechnol Lett 26:1595–1599

    PubMed  CAS  Google Scholar 

  • Lee-Parsons CWT, Shuler ML (2002) The effect of ajmalicine spiking and resin addition timing on the production of indole alkaloids from Catharanthus roseus cell cultures. Biotechnol Bioeng 79:408–415

    PubMed  CAS  Google Scholar 

  • Mans DRA, Da Rocha AB, Schwartsmann G (2000) Anti-cancer drug discovery and development in Brazil: targeted plant collection as a rational strategy to acquire candidate anti-cancer compounds. The Oncologist 5:185–198

    PubMed  CAS  Google Scholar 

  • McCalley DV (2002) Analysis of the Cinchona alkaloids by high-performance liquid chromatography and other separation techniques. J Chromatogr A 967:1–19

    PubMed  CAS  Google Scholar 

  • Meijer AH, Verpoorte R, Hoge JHC (1993) Regulation of enzymes and genes involved in terpenoid indole alkaloid biosynthesis in Catharanthus roseus. J Plant Res 3:145–164

    Google Scholar 

  • Molyneux RJ, Gardner DR, James LF, Colegate SM (2002) Polyhydroxy alkaloids: chromatographic analysis. J Chromatogr A 967:57–74

    PubMed  CAS  Google Scholar 

  • Monforte-Gonzáles M, Ayaora-Talavera T, Maldonado-Mendoza IE, Loyola-Vargas VM (1992) Quantitative analysis of serpentine and ajmalicine in plant tissues of Catharanthus roseus and hyoscyamine and scopolamine in root tissues of Datura stramonium by thin layer chromatography–densitometry. Phytochem Anal 3:117–121

    Google Scholar 

  • Moreno PRH, Van der Heijden R, Verpoorte R (1993) Effect of terpenoid precursor feeding and elicitation on formation of indole alkaloids in cell-suspension cultures of Catharanthus roseus. Plant Cell Rep 12:702–705

    CAS  Google Scholar 

  • Moreno-Valenzuela OA, Galaz-Avalos RM, Minero-Garcia Y, Loyola-Vargas VM (1998) Effect of differentiation on the regulation of indole alkaloid production in Catharanthus roseus hairy roots. Plant Cell Rep 18:99–104

    CAS  Google Scholar 

  • Morgan JA, Barney CS, Penn AH, Shanks JV (2000) Effects of buffered media upon growth and alkaloid production of Catharanthus roseus hairy roots. Appl Microbiol Biotechnol 53:262–265

    PubMed  CAS  Google Scholar 

  • Morgan JA, Shanks JV (2002) Quantification of metabolic flux in plant secondary metabolism by a biogenetic organizational approach. Metabol Eng 4:257–262

    Google Scholar 

  • Naaranlahti T, Nordstrom M, Huhtikangas A, Lounasmaa M (1987) Determination of Catharanthus alkaloids by reversed-phase high-performance liquid chromatography. J Chromatogr A 410:488–493

    CAS  Google Scholar 

  • Naaranlahti T, Ranta V-P, Jarho P, Nordström M, Lapinjoki SP (1989) Electrochemical detection of indole alkaloids of Catharanthus roseus in high-performance liquid chromatography. Analyst 114:1229–1331

    PubMed  CAS  Google Scholar 

  • Nawrocki J (1997) The silanol group and its role in liquid chromatography. J Chromatogr A 779:29–71

    CAS  Google Scholar 

  • O’Gara JE, Walsh DP, Alden BA, Casellini P, Walter TH (1999) Systematic study of chromatographic behavior vs. alkyl chain length for HPLC bonded phases containing an embedded carbamate group. Anal Chem 71:2992–2997

    CAS  Google Scholar 

  • Payne GF, Payne NN, Shuler ML, Asada M (1988) In situ adsorption for enhanced alkaloid production of Catharanthus roseus. Biotechnol Lett 10:187–192

    CAS  Google Scholar 

  • Pennings EJM, Verpoorte R, Goddijn OJM, Hoge JHC (1989) Purification of tryptophan decarboxylase from a Catharanthus roseus cell-suspension culture. J Chromatogr 483:311–318

    CAS  Google Scholar 

  • Potier P, Langlois N, Langlois Y, Guéritte F (1975) Partial synthesis of vinblastine-like alkaloids. J Chem Soc 16:670–671

    Google Scholar 

  • Rao SR, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153

    PubMed  CAS  Google Scholar 

  • Renaudin JP (1985) Extraction and fluorimetric detection after high-performance liquid chromatography of indole alkaloids from cultured cells of Catharanthus roseus. Physiol Veg 23:381–388

    CAS  Google Scholar 

  • Renaudin JP (1984) Reversed-phase high-performance liquid chromatographic characteristics of indole alkaloids from cell suspension cultures of Catharanthus roseus. J Chromatogr A 291:165–174

    CAS  Google Scholar 

  • Renaudin JP (1989) Different mechanisms control the vacuolar compartmentation of ajmalicine in Catharanthus roseus cell cultures. Plant Physiol Biochem 27:613–621

    CAS  Google Scholar 

  • Renaudin JP, Brown SC, Guern J (1982) Compartmentation mechanisms of indole alkaloids in cell suspension of Catharanthus roseus. Phyisol Veg 20:533–547

    CAS  Google Scholar 

  • Rijhwani SK, Shanks JV (1998) Effect of elicitor dosage and exposure time on biosynthesis of indole alkaloids by Catharanthus roseus hairy root cultures. Biotechnol Prog 14:442–449

    PubMed  CAS  Google Scholar 

  • Rodriguez S, Compagnon V, Crouch NP, St-Pierre B, De Luca V (2003) Jasmonate-induced epoxidation of tabersonine by a cytochrome p-450 in hairy root cultures of Catharanthus roseus. Phytochemistry 64:401–409

    PubMed  CAS  Google Scholar 

  • Satdive RK, Fulzele DP, Eapen S (2003) Studies on production of ajmalicine in shake flasks by multiple shoot cultures of Catharanthus roseus. Biotechnol Prog 19:1071–1075

    PubMed  CAS  Google Scholar 

  • Schroder G, Unterbusch E, Kaltenbach M, Schmidt J, Strack D, De Luca V, Schroder J (1999) Light-induced cytochrome P450-dependent enzyme in indole alkaloid biosynthesis: tabersonine 16-hydroxylase. FEBS Lett 458:97–102

    PubMed  CAS  Google Scholar 

  • Shanks JV, Bhadra R, Morgan J, Rijhwani S, Vani S (1998) Quantification of metabolites in the indole alkaloid pathways of Catharanthus roseus: implications for metabolic engineering. Biotechnol Bioeng 58:333–338

    PubMed  CAS  Google Scholar 

  • Sim SJ, Chang HN, Liu JR, Jung KH (1994) Production and secretion of indole alkaloids in hairy root cultures of Catharanthus roseus – effects of in-situ adsorption, fungal elicitation and permeabilization. J Ferment Bioeng 78:229–234

    CAS  Google Scholar 

  • Singh D, Maithy A, Verma R, Gupta M, Kumar S (2000) Simultaneous determination of Catharanthus alkaloids using reversed phase high performance liquid chromatography. J Liquid Chromatogr Relat Technol 23:601–607

    CAS  Google Scholar 

  • Spanik I, Lim P, Vigh G (2002) Use of full-column imaging capillary isoelectric focusing for the rapid determination of the operating conditions in the preparative-scale continuous free-flow isoelectric focusing separation of enantiomers. J Chromatogr A 960:241–246

    PubMed  CAS  Google Scholar 

  • St-Pierre B, De Luca V (1995) A cytochrome p-450 monooxygenase catalyzes the first step in the conversion of tabersonine to vindoline in Catharanthus roseus. Plant Physiol 109:131–139

    PubMed  CAS  Google Scholar 

  • St-Pierre B, Vazquez-Flota FA, De Luca V (1999) Multicellular compartmentation of Catharanthus roseus alkaloid biosynthesis predicts intercellular translocation of a pathway intermediate. Plant Cell 11:887–900

    PubMed  CAS  Google Scholar 

  • Stevens LH, Giroud C, Pennings EJM, Verpoorte R (1993) Purification and characterization of strictosidine synthase from a suspension culture of Cinchona robusta. Phytochemistry 33:99–106

    CAS  Google Scholar 

  • Stöckigt J, Sheludko Y, Unger M, Gerasimenko I, Warzecha H, Stöckigt D (2002) High-performance liquid chromatographic, capillary electrophoretic and capillary electrophoretic–electrospray ionisation mass spectrometric analysis of selected alkaloid groups. J Chromatogr A 967:85–113

    PubMed  Google Scholar 

  • Strege M (1999) High-performance liquid chromatographic–electrospray ionization mass spectrometric analyses for the integration of natural products with modern high-throughput screening. J Chromatogr B 725:67–78

    CAS  Google Scholar 

  • Suntornsuk L (2002) Capillary electrophoresis of phytochemical substances. J Pharm Biomed Anal 27:679–698

    PubMed  CAS  Google Scholar 

  • Tikhomiroff C, Allais S, Klvana M, Hisiger S, Jolicoeur M (2002) Continuous selective extraction of secondary metabolites from Catharanthus roseus hairy roots with silicon oil in a two-liquid-phase bioreactor. Biotechnol Progr 18:1003–1009

    CAS  Google Scholar 

  • Tikhomiroff C, Jolicoeur M (2002) Screening of Catharanthus roseus secondary metabolites by high-performance liquid chromatography. J Chromatogr A 955:87–93

    PubMed  CAS  Google Scholar 

  • Toivonen L, Ojala M, Kauppinen V (1991) Studies on the optimization of growth and indole alkaloid production by hairy root cultures of Catharanthus roseus. Biotechnol Bioeng 37:673–680

    CAS  PubMed  Google Scholar 

  • Uniyal GC, Bala S, Mathur AK, Kulkarni RN (2001) Symmetry C18 column: a better choice for the analysis of indole alkaloids of Catharanthus roseus. Phytochem Anal 12:206–210

    PubMed  CAS  Google Scholar 

  • Van Der Heijden R, Verpoorte R, Ten Hoopen JG (1989) Cell and tissue cultures of Catharanthus (L.)G. Don: a literature survey. Plant Cell Tiss Org 18:231–280

    Google Scholar 

  • Van Der Heijden R, Jacobs DI, Snoeijer W, Hallared D, Verpoorte R (2004) The Catharanthus alkaloids: pharmacognosy and biotechnology. Curr Med Chem 11:607–628

    Google Scholar 

  • Van Der Heijden R, Lamping PJ, Out PP, Wijnsma R, Verpoorte R (1987) High-performance liquid chromatographic determination of indole alkaloids in a suspension culture of Tabersnaemontana divaricata. J Chromatogr 396:287–295

    Google Scholar 

  • Van Elswijk DA, Irth I (2003) Analytical tools for the detection and characterization of biologically active compounds from nature. Phytochem Rev 1:427–439

    Google Scholar 

  • Vazquez-Flota F, Carrillo-Pech M, Minero-Garcia Y, de Lourdes Miranda-Ham M (2004) Alkaloid metabolism in wounded Catharanthus roseus seedlings. Plant Physiol Biochem 42:623–628

    PubMed  CAS  Google Scholar 

  • Verpoorte R, Memelink J (2002) Engineering secondary metabolite production in plants. Curr Opin Biotech 13:181–187

    PubMed  CAS  Google Scholar 

  • Verpoorte R, Niessen W (1994) Liquid chromatography coupled with mass spectrometry in the analysis of alkaloids. Phyotchem Anal 5:217–232

    Google Scholar 

  • Verpoorte R, Van Der Heijden R, Ten Hoopen HJG, Memelink J (1999) Metabolic engineering of plant secondary metabolite pathways for the production of fine chemicals. Biotechnol Lett 21:467–479

    CAS  Google Scholar 

  • Whitmer S, Van Der Heijden R, Verpoorte R (2002) Effect of precursor feeding on alkaloid accumulation by a strictosidine synthase over-expressing transgenic cell line s1 of Catharanthus roseus. Plant Cell Tiss Org Cult 69:85–93

    CAS  Google Scholar 

  • Wong PL, Royce AJ, Lee-Parsons CWT (2004) Improved ajmalicine production and recovery from Catharanthus roseus suspensions with increased product removal rates. Biochem Eng J 21:253–258

    CAS  Google Scholar 

  • Zhao Y, Nookandeh A, Schneider B, Sun X, Schmitt B, Stöckigt J (1999) Lignans from Torreya jackiiidentified by stopped-flow high-performance liquid chromatography–nuclear magnetic resonance spectroscopy. J Chromatogr A 837:83–91

    CAS  Google Scholar 

  • Zhao J, Zhu WH, Hu Q (2001) Enhanced catharanthine production in catharanthus roseus cell cultures by combined elicitor treatment in shake flasks and bioreactors. Enzyme Microbiol Technol 28:673–681

    CAS  Google Scholar 

  • Zhou H, Tai YP, Sun CR, Pan YJ (2005) Rapid identification of Vinca alkaloids by direct-injection electrospray ionisation tandem mass spectrometry and confirmation by high-performance liquid chromatography–mass spectrometry. Phytochem Anal 16:328–333

    PubMed  CAS  Google Scholar 

  • Zimina TM, Smith RM, Myers P (1997) Comparison of ODS-modified silica gels as stationary phases for electrochromatography in packed capillaries. J Chromatogr A 758:191–197

    CAS  Google Scholar 

Download references

Acknowledgements

Authors wish to thank Dr. Verpoorte for his kind permission to include in this paper his unpublished work shown as Fig. 4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Jolicoeur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hisiger, S., Jolicoeur, M. Analysis of Catharanthus roseus alkaloids by HPLC. Phytochem Rev 6, 207–234 (2007). https://doi.org/10.1007/s11101-006-9036-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-006-9036-y

Keywords

Navigation