Skip to main content
Log in

Functional genomics of cell elongation in developing cotton fibers

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Cotton fibers are single-celled seed trichomes of major economic importance. Factors that regulate the rate and duration of cell expansion control fiber morphology and important agronomic traits. For genetic characterization of rapid cell elongation in cotton fibers, ∼ 14,000 unique genes were assembled from 46,603 expressed sequence tags (ESTs) from developmentally staged fiber cDNAs of a cultivated diploid species (Gossypium arboreumL.). Conservatively, the fiber transcriptome represents 35–40% of the genes in the cotton genome. In silico expression analysis revealed that rapidly elongating fiber cells exhibit significant metabolic activity, with the bulk of gene transcripts, represented by three major functional groups – cell wall structure and biogenesis, the cytoskeleton and energy/carbohydrate metabolism. Oligonucleotide microarrays revealed dynamic changes in gene expression between primary and secondary cell wall biogenesis showing that fiber genes in the dbEST are highly stage-specific for cell expansion – a conclusion supported by the absence of known secondary cell wall-specific genes from our fiber dbEST. During the developmental switch from primary to secondary cell wall syntheses, 2553 “expansion-associated” fiber genes are significantly down regulated. Genes (81) significantly up-regulated during secondary cell wall synthesis are involved in cell wall biogenesis and energy/carbohydrate metabolism, which is consistent with the stage of cellulose synthesis during secondary cell wall modification in developing fibers. This work provides the first in-depth view of the genetic complexity of the transcriptome of an expanding cell, and lays the groundwork for studying fundamental biological processes in plant biology with applications in agricultural biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akamatsu, T., Hanzawa, Y., Ohtake, Y., Takahashi, T., Nishitani, K. and Komeda, Y. 1999. Expression of endoxyloglucan transferase genes in acaulis mutants of Arabidopsis. Plant Physiol. 121: 715–721.

    Article  PubMed  Google Scholar 

  • Amor, Y., Haigler, C.H., Johnson, S., Wainscott, M. and Delmer, D.P. 1995. A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc. Natl. Acad. Sci. USA 2: 9353–9357.

    Google Scholar 

  • Applied Biosystems. 2001. ABI Prism 7700 Sequence Detection System User Bulletin 2. The Perkin-Elmer Corporation, P/N 4303859 Rev B, Stock No. 777802-002. http://docs.appliedbiosystems. com/pebiodocs/04303859.pdf

  • Apweiler, R., Attwood, T.K., Bairoch, A., Bateman, A., Birney, E., Biswas, M., Bucher, P., Cerutti, L., Corpet, F., Croning, M.D.R. et al. 2001. The InterPro database, an integrated documentation resource for protein families, domains and functional sites. Nucleic Acids Res. 29: 37–40.

    Article  PubMed  Google Scholar 

  • Arioli, T., Peng., L., Betzner, A.S., Burn, J., Wittke, W., Herth, W., Camilleri, C., Hofte, H., Plazinski, J., Birch, R., Cork, A., Glover, J., Redmond, J. and Williamson, R.E. 1998. Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279: 717–720.

    Article  PubMed  Google Scholar 

  • Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T. et al. 2000. Gene ontology: Tool for the unification of biology. Nat. Genet. 25: 25–29.

    Article  PubMed  Google Scholar 

  • Basra, A.S. and Malik, C.P. 1984. Development of cotton fibers. Int. Rev. Cytol. 89: 65–113.

    Google Scholar 

  • Bouyer, D., Kirik, V. and Hülskamp, M. 2001. Cell polarity in Arabidopsis trichomes. Cell Dev. Biol. 12: 353–356.

    Article  Google Scholar 

  • Burn, E.J., Hocart, C.H., Birch, R.J., Cork, A. and Williamson, R.E. 2002. Functional analysis of the cellulose synthase genes CesA1, CesA2, and CesA3 in Arabidopsis. Plant Physiol. 129: 797–807.

    Article  PubMed  Google Scholar 

  • Carpita, N.C. and Gibeau, D.M. 1993. Structural models of primary cell walls in flowering plants: Consistency of molecular structure with the physical properties of the walls during growth. Plant J. 3: 1–30.

    Article  PubMed  Google Scholar 

  • Cedroni, M.L., Cronn, R.C., Adams, K.L., Wilkins, T.A. and Wendel, J.F. 2003. Evolution and expression of MYB genes in diploid and polyploid cotton. Plant Mol. Biol. 51: 313–325.

    Article  PubMed  Google Scholar 

  • Cosgrove, D.J. 2000. Expansive growth of plant cell walls. Plant Physiol. Biochem. 38: 109–124.

    Article  PubMed  Google Scholar 

  • Cosgrove, D.J., Li, L.C., Cho, H.-T., Hoffmann-Benning, S., Moore, R.C. and Blecker, D. 2002. The growing world of expansins. Plant Cell Physiol. 43: 1436–1444.

    Article  PubMed  Google Scholar 

  • Darley, C.P., Forrester, A.M. and McQueen-Mason, S.J. 2001. The molecular basis of plant cell wall extension. Plant Mol. Biol. 47: 179–195.

    Article  PubMed  Google Scholar 

  • Delmer, D.P. 1999. Chapter 4. Cellulose biosynthesis in developing cotton fibers. In: A.M. Basra (Ed.), Cotton Fibers. Hawthorne Press, New York, pp. 85–106.

    Google Scholar 

  • Edwards, M., Dea, I.C.M., Bulpin, P.V. and Reid, J.S.G. 1986. Purification and properties of a novel, xyloglucan-specific endo-(14)-β-D-glucanase from germinated nasturtium seeds (Tropaeolum majus L.). J. Biol. Chem. 261: 9489–9494.

    PubMed  Google Scholar 

  • Favery, B., Ryan, E., Foreman, J., Linstead, P., Boudonck, K., Steer, M., Shaw, P. and Dolan, L. 2001. KOJAK encodes a cellulose synthase-like protein required for root hair cell morphogenesis in Arabidopsis. Genes Dev. 15: 79–89.

    Article  PubMed  Google Scholar 

  • Galau, G.A. and Wilkins, T.A. 1989. Alloplasmic male sterility in AD allotetraploid Gossypium hirsutum upon replacement of its resident A cytoplasm with that of D species G. harknessii. Theor. Appl. Genet. 78: 23–30.

    Article  Google Scholar 

  • Hasenfratz, M.-P., Tsou C.-L. and Wilkins, T.A. 1995. Expression of two related vacuolar H+-ATPase 16 kD proteolipid genes is differentially regulated in a tissue-specific manner. Plant Physiol. 108: 1395–1404.

    Article  PubMed  Google Scholar 

  • Hayashi, T., Wong, Y.-S. and Maclachlan, G.A. 1984. Pea xyloglucan and cellulose. 2. Hydrolysis by pea endo-1,4-betaglucanases. Plant Physiol. 75: 605–610.

    Google Scholar 

  • Hayes, D.B. and Skinner, D.Z. 2001. Development of an expressed sequence tag (EST) library for Medicago sativa. Plant Sci. 161: 517–526.

    Article  Google Scholar 

  • Hedge, P., Qi, R., Abernathy, K., Gay, C., Dharap, S., Gaspard, R., Hughes, J.E., Snesrud, E., Lee, N. and Quackenbush, J. 2000. A concise guide to cDNA microarray analysis. Biotechniques 29: 548–557.

    PubMed  Google Scholar 

  • Henikoff, S., Henikoff, J.G. and Pietrokovski, S. 1999. Blocks+: A non-redundant database of protein alignment blocks derived from multiple compilations. Bioinformatics 15: 471–479.

    Article  PubMed  Google Scholar 

  • Hsieh, Y.-L. 1999. Structural development of of cotton fibers and linkages to fiber quality. In: A.S. Basra (Ed.), Cotton Fibers, Hawthorne Press Inc., New York, pp. 137–144.

    Google Scholar 

  • Hughes, T.R., Mao, M., Jones, A.R., Burchard, J., Marton, M.J., Shannon, K.W., Lefkowitz, S.M., Ziman, M., Schelter, J.M., Meyer, M.R., Kobayashi, S., Davis, C., Dai, H.Y., He, Y.D.D., Stephaniants, S.B., Cavet, G., Walker, W.L., West, A., Coffey, E., Shoemaker, D.D., Stoughton, R., Blanchard, A.P., Friend, S.H. and Lindsey, P.S. 2001. Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nature Biotech. 19: 342–347.

    Article  Google Scholar 

  • Iraki, N.M., Bressan, R.A., Hasegawa, P.M. and Carpita, N.C. 1989. Alteration of the physical and chemical structure of the primary cell wall of growth limited plant cells adapted to osmatic stress. Plant Physiol. 91: 39–47.

    Google Scholar 

  • John, M.E. 1999. Genetic engineering strategies for cotton fiber modification. In: A.S. Basra (Ed), Cotton Fibers, Hawthorne Press, New York, pp. 271–292.

    Google Scholar 

  • John, M.E. and Crow, L.J. 1992. Gene expression in cotton (Gossypium hirsutum L.) fiber: Cloning of the mRNAs. Proc. Natl. Acad. Sci. USA 89: 5769–5773.

    PubMed  Google Scholar 

  • Kim, G.T., Shoda, K., Tsuge, T., Cho, K.H., Uchimiya, H., Yokoyama, R., Nishitani, K. and Tsukaya, H. 2002. The ANGUSTIFOLIA gene of Arabidopsis, a plant CtBP gene, regulates leaf-cell expansion, the arrangement of cortical microtubules in leaf cells and expression of a gene involved in cell-wall formation. EMBO J. 21: 1267–1279.

    Article  PubMed  Google Scholar 

  • Kohel, R.J., Yu, J., Park, Y.-H. and Lazo, G.R. 2001. Molecular mapping and characterization of traits controlling fiber quality in cotton. Euphytica 121: 163–172.

    Article  Google Scholar 

  • Kurek, I., Kawagoe, Y., Jacob-Wilk, D., Doblin, M. and Delmer, D. 2002. Dimerization of cotton fiber cellulose synthase catalytic subunit occurs via oxidation of the zincbing domains. Proc. Natl. Acad. Sci. USA 99:11109–11114.

    Article  PubMed  Google Scholar 

  • Lijavetzky, D., Muzzi, G., Wicker, T., Keller, B., Wing, R. and Dubcovsky, J. 1999. Construction and characterization of a bacterial artificial chromosome (BAC) library for the A genome of wheat. Genome 42: 1176–1182.

    Article  PubMed  Google Scholar 

  • Maier, E., Meier-Ewert, S., Ahmadi, A.R., Curtis, J. and Lehrach, H. 1994. Application of robotic technology to automated sequence fingerprint analysis by oligonucleotide hybridization. J. Biotech. 35: 191–203.

    Article  Google Scholar 

  • Marx-Figini, M. 1966. Comparison of the biosynthesis of cellulose in vitro and in vivo in cotton bolls. Nature 210: 747–755.

    PubMed  Google Scholar 

  • Meinert, M.C. and Delmer, D.P. 1977. Changes in biochemical composition of cell wall of cotton fiber during development. Plant Physiol. 59: 1088–1097.

    Google Scholar 

  • Meredith, Jr. W.R. 2000. Continued progress for breeding for yield in the USA? In: U. Kechagia (Ed.), Proceedings of the World Cotton Research Conference II, Athens, Greece, pp. 97–101.

  • Molhoj, M., Pagant, S. and Hofte, H. 2002. Toward understanding of the role of membrane-bound endo-β-1,4-glucanases in cellulose biosynthesis. Plant Cell Phyisol. 43: 1399–1406.

    Article  Google Scholar 

  • Nolte, K.D., Hendrix, D.L., Radin, J.W. and Koch, K.E. 1995. Sucrose synthase localization during initiation of seed development and trichome differentiation in cotton ovules. Plant Physiol. 109: 1285–1293.

    PubMed  Google Scholar 

  • Orford, S.J. and Timmis, J.N. 1998. Specific expression of an expansin gene during elongation of cotton fibres. BBA Genet. Struct. Exp. 1398: 342–346.

    Google Scholar 

  • Pear, J.R., Kawagoe. Y., Schreckengost, W.E., Delmer, D.P. and Stalker, D.M. 1996. Higher plants contain homologs of the bacterial celA gene encoding the catalytic subunit of cellulose synthase. Proc. Natl. Acad. Sci. USA 93: 12637–12642.

    Article  PubMed  Google Scholar 

  • Peng, L., Kawagoe, Y., Hogan, P. and Delmer, D. 2002. Sitosterol-β-glucoside as primer for cellulose synthesis in plants. Science 295: 147–150.

    Article  PubMed  Google Scholar 

  • Potikha, T.S., Collins, C., Johnson, D.I., Delmer, D.P. and Levine, A. 1999. The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers. Plant Physiol. 119: 849–858.

    Article  PubMed  Google Scholar 

  • Ratajczak, R. and Wilkins, T.A. 2000. Energizing the tonoplast. Chapter 7. In: D.G. Robinson and J.C. Rogers (Eds.), Vacuolar Compartments, Sheffield Academic Press Ltd., England, pp. 133–173.

    Google Scholar 

  • Rong, J.K., Abbey, C., Bowers, J.E., Brubaker, C.L., Chang, C., Chee, P.-W., Delmonte, T.A., Ding, X.L., Garza, J.J., Marler, B.S., Park, C.H., Pierce, G.J., Rainey, K.M., Rastogi, V.K., Schultze, S.R., Trolinder, N.L., Wendel, J.F., Wilkins, T.A., Williams-Coplin, T.D., Wing, R.A., Wright, R.J., Zhao, X.P., Zhu, L.H. and Paterson, A.H. 2004. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics 166: 389–417.

    Article  PubMed  Google Scholar 

  • Rose, J.K.C., Braam, J., Fry, S.C. and Nishitani, K. 2002. The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: Current perspectives and a new unifying nomenclature. Plant Cell Physiol. 43: 1421–1435.

    Article  PubMed  Google Scholar 

  • Ruan, Y.L., Llewellyn, D.J. and Furbank, R.T. 2001. Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. Plant Cell 13: 47–60.

    Article  PubMed  Google Scholar 

  • Ryser, U. 1999. Chapter 1. Cotton fiber initiation and histodifferentiation. In: A.M. Basra (Ed.), Cotton Fibers, Hawthorne Press, New York, pp. 1–45.

    Google Scholar 

  • Scheible, W.R., Eshed, R., Richmond, T., Delmer, D. and Somerville, C. 2001. Modifications of cellulose synthase confer resistance to isoxalen and thiazolidinone herbicides in Arabidopsis Ixrl mutants. Proc. Natl. Acad. Sci. USA 98: 10079–10084.

    Article  PubMed  Google Scholar 

  • Seagull, R.W. 1992. A quantitative electron microscopic study of changes in microtubule arrays and wall microfibril orientation during in vitro cotton fiber development. J. Cell Sci. 101: 561–577.

    Google Scholar 

  • Senchina, D.S., Alvarez, I., Cronn, R.C., Liu, B., Rong, J., Noyes, R.D., Paterson, A.H., Wing, R.A., Wilkins, T.A. and Wendel J.F. 2003. Rate variation among nuclear genes and the age of polyploidy in Gossypium. Mol. Biol. Evol. 20: 633–643.

    Article  PubMed  Google Scholar 

  • Shimizu, Y., Aotsuka, S., Hasegawa, O., Kawada, T., Sakuno, T.F. and Hayashi, T. 1997. Changes in levels of mRNAs for cell wall-related enzymes in growing cotton fiber cells. Plant Cell Physiol. 38: 375–378.

    PubMed  Google Scholar 

  • Smart, L.B., Vojdani, F., Maeshima, M. and Wilkins, T.A. 1998. Genes involved in Osmoregulation during turgordriven cell expansion of developing cotton fibers are differentially regulated. Plant Physiol. 116: 1539–1549.

    Article  PubMed  Google Scholar 

  • Tiwari, S.C. and Wilkins, T.A. 1995. Cotton (Gossypium hirsutum L.) seed trichomes expand via diffuse growing mechanism. Can. J. Bot. 73: 746–757.

    Google Scholar 

  • Trainotti, L., Spolaore, S., Pavanello, A., Baldan B. and Casadoro, G. 1999. A novel E-type endo-β-1,4-glucanase with a putative cellulose-binding domain is highly expressed in ripening strawberry fruits. Plant Mol. Biol. 40: 323–332.

    Article  PubMed  Google Scholar 

  • Vogler, H., Caderas, D., Mandel, T. and Kuhlemeier C. 2003. Domains of expansin gene expression define growth regions in the shoot apex of tomato. Plant Mol. Biol. 53: 267–272.

    Article  PubMed  Google Scholar 

  • Vojdani, F., Kim, W. and Wilkins, T.A. 1997. Phosphoenolpyruvate carboxylase cDNAs from developing cotton (Gossypium hirsutum) fibers (accession no. AF008939 and AF008940) (PGR 97-135). Plant Physiol. 115: 315.

    Google Scholar 

  • Wan, C.-Y. and Wilkins, T.A. 1994. A modified hot borate method significantly enhances the yield of high-quality RNA from cotton (Gossypium hirsutum L.). Anal. Biochem. 223: 7–12.

    Article  PubMed  Google Scholar 

  • Wendel, J.F. 1989. New world tetraploid cottons contain old-world cytoplasm. Proc. Natl. Acad. Sci. USA 86: 4132–4136.

    Google Scholar 

  • Werker, E. 2000. Trichome diversity and development. Adv. Bot. Res. 31: 1–35.

    Article  Google Scholar 

  • Wilkins, T.A. 1993. Vacuolar H+-ATPase 69-kilodalton catalytic subunit cDNA from developing cotton (Gossypium hirsutum) ovules. Plant Physiol. 102: 679–680.

    Article  PubMed  Google Scholar 

  • Wilkins, T.A. and Jernstedt, J.A. 1999. Chapter 9. Molecular genetics of developing cotton fibers. In: A.M. Basra (Ed.), Cotton Fibers, Hawthorne Press, New York, pp. 231–267.

    Google Scholar 

  • Wilkins, T.A. and Smart, L.B. 1996. Chapter 2. Isolation of RNA from plants. In: P.A. Kreig (Ed.), A Laboratory Guide to RNA: Isolation, analysis and synthesis, Wiley & Sons Inc., New Jersey, pp. 21–41.

    Google Scholar 

  • Wilkins, T.A., Rajasekaran, K. and Anderson, D.M. 2000. Cotton Biotechnology. Crit. Rev. Plant Sci. 15: 511–550.

    Google Scholar 

  • Wilkins, T.A., Wan, C.Y. and Lu, C.C. 1994. Ancient origin of the vacuolar H+-ATPase 69-kilodalton catalytic subunit superfamily. Theor. Appl. Genet. 89: 514–524.

    Article  Google Scholar 

  • Zdobnov, E.M. and Apweiler, R. 2001. InterProScan – An integration platform for the signature-recognition methods in InterPro. Bioinformatics 17: 847–848.

    Article  PubMed  Google Scholar 

  • Zhang, T., Yuan, Y., Yu, J., Guo, W. and Kohel, R.J. 2003. Molecular tagging of a major QTL for fiber strength in Upland cotton and its marker-assisted selection. Theor. Appl. Genet. 106: 262–268.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arpat, A., Waugh, M., Sullivan, J.P. et al. Functional genomics of cell elongation in developing cotton fibers. Plant Mol Biol 54, 911–929 (2004). https://doi.org/10.1007/s11103-004-0392-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-004-0392-y

Navigation