Skip to main content
Log in

Modulation of flowering responses in different Nicotiana varieties

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

We have identified and characterized a FLOWERING PROMOTING FACTOR 1(FPF1) gene from tobacco (NtFPF1). Over-expression of NtFPF1 leads to early flowering in the day-neutral tobacco Nicotiana tabacum cv. Hicks, and under inductive photoperiods also in the short-day Nicotiana tabacum cv. Hicks Maryland Mammoth (MM) tobacco and the long-day plant Nicotiana sylvestris. N. sylvestris wild-type plants remained in the rosette stage and never flowered under non-inductive short-days, whereas 35S::NtFPF1 transgenic plants bolted but did not flower. However, if treated with gibberellins, transgenic N. sylvestrisplants flowered much faster under non-inductive short days than corresponding wild type plants, indicating an additive effect of gibberellins and the NtFPF1 protein in flowering time control. The day-neutral wild type cv. Hicks and the short-day cv. Hicks MM plants exhibit an initial rosette stage, both under short- and long-days. In the transgenic lines, this rosette stage was completely abolished. Wild-type plants of cv. Hicks MM never flowered under long days; however, all transgenic lines over-expressing NtFPF1 flowered under this otherwise non-inductive photoperiod.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Blazquez, M.A., Green, R., Nilsson, O., Sussman, M.R. and Weigel, D. 1998. Gibberellins promote flowering of Arabidopsis by activating the LEAFY promotor. Plant Cell 10: 791–800.

    Article  PubMed  Google Scholar 

  • Blazquez, M.A. and Weigel, D. 2000. Integration of floral inductive signals in Arabidopsis. Nature 404: 889–892.

    Article  PubMed  Google Scholar 

  • Borner, R., Kampmann, G., Chandler, J., Gleissner, R., Wisman, E., Apel, K. and Melzer, S. 2000. A MADS domain gene involved in the transition to flowering in Arabidopsis. Plant J. 24: 591–599.

    Article  PubMed  Google Scholar 

  • Chandler, J. and Dean, C. 1994. Factors influencing the vernalization response and flowering time of late flowering mutants of Arabidopsis thaliana (L.) Heynh. J. Exp. Bo. 45: 1279–1288.

    Google Scholar 

  • Coen, E.S., Romero, J.M., Doyle, S., Elliott, R., Murphy, G. and Carpenter, R. 1990. Floricaula: a homeotic gene required for flower development in Antirrhinum majus. Cell 63: 1311–1322.

    Article  PubMed  Google Scholar 

  • Datla, R.S.S., Hammerlindl, J.K., Panchuk, B., Pelcher, L.E. and Keller, W. 1992. Modified binary plant transformation vectors with the wild-type gene encoding NPT II. Gene 211: 383–384.

    Google Scholar 

  • Eyal, Y., Sagee, O. and Fluhr, R. 1992. Dark-induced accumulation of a basic pathogenesis related (Pr-1) transcript and a light requirement for its induction by ethylene. Plant Mol. Biol. 19: 589–599.

    Article  PubMed  Google Scholar 

  • Garner, W.W. and Allard, H.A. 1920. Effect of the relative length of the day and night and other factors of the environment on growth and reproduction in plants. J. Agric. Res. 18: 553–606.

    Google Scholar 

  • Gebhardt, J.S. and McDaniel, C.N. 1991. Flowering response of day-neutral and short-day cultivars of Nicotiana tabacum L. interactions among roots, genotype, leaf ontogenetic position and growth conditions. Planta 185: 513–517.

    Article  Google Scholar 

  • Halliday, K.J., Thomas, B. and Whitelam, G.C. 1997. Expression of heterologous phytochromes A, B or C in transgenic tobacco plants alters vegetative development and flowering time. Plant J. 12: 1079–1090.

    Article  PubMed  Google Scholar 

  • Hayama, R., Yokoi, S., Tamaki, S., Yano, M. and Shimamoto, K. 2003. Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422: 719–722.

    Article  PubMed  Google Scholar 

  • Holtorf, S., Apel, K. and Bohlmann, H. 1995. Comparison of different constitutive and inducible promoters for the overexpression of transgenes in Arabidopsis thaliana. Plant Mol. Biol. 29: 637–646.

    Article  PubMed  Google Scholar 

  • Horsch, R.B., Fry, J.E., Hoffmann, N.L., Eichholtz, D., Rogers, S.G. and Fraley, R.T. 1985. A simple and general method for transferring genes into plants. Science 227: 1229–1234.

    Google Scholar 

  • Kania, T., Russenberger, D., Peng, S., Apel, K. and Melzer, S. 1997. FPF1 promotes flowering in Arabidopsis. Plant Cell 9: 1327–1338.

    Article  PubMed  Google Scholar 

  • Kardailsky, I., Shukla, V.K., Ahn, J.H., Dagenais, N., Christensen, S.K., Nguyen, J.T., Chory, J., Harrison, M.J. and Weigel, D. 1999. Activation tagging of the floral inducer FT. Science 286: 1962–1965.

    Article  PubMed  Google Scholar 

  • Kelly, A.J., Bonnlander, M.B. and Meeks-Wagner, D.R. 1995. NFL, the tobacco homolog of FLORICAULA and LEAFY, is transcriptionally expressed in both vegetative and floral meristems. Plant Cell 7: 225–234.

    Article  PubMed  Google Scholar 

  • Kobayashi, Y., Kaya, H., Goto, K., Iwabuchi, M. and Araki, T. 1999. A pair of related genes with antagonistic roles in mediating flowering signals. Science 286: 1960-dy1962.

    Article  PubMed  Google Scholar 

  • Koorneef, M., Alonso-Blanco, C., Peeters, A.J.M. and Soppe, W. 1998. Genetic control of flowering time in Arabidopsis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 345–370.

    Article  PubMed  Google Scholar 

  • Lang, A. 1989. Nicotiana. In: A.H. Halevy (Ed.) Handbook of Flowering. vol. VI. CRC Press Inc., pp. 427–484.

    Google Scholar 

  • Langridge, J. 1957. Effect of day-length and gibberellic acid on the flowering of Arabidopsis. Nature 180: 36–37.

    Google Scholar 

  • Lee, H., Suh, S.S., Park, E., Cho, E., Ahn, J.H., Kim, S.G., Lee, J.S., Kwon, Y.M. and Lee, I. 2000. The AGAMOUSLIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev. 14: 2366–2376.

    Article  PubMed  Google Scholar 

  • Mandel, T., Fleming, A.J., Krähenbühl, R. and Kuhlemeier, C. 1995. Definition of constitutive gene expression in plants: the translation initiation factor 4A gene as a model. Plant Mol. Biol. 29: 995–1004.

    Article  PubMed  Google Scholar 

  • McDaniel, C.N. 1996. Developmental physiology of floral initiation in Nicotiana tabacum L. J. Exp. Bot. 47: 465–475.

    Google Scholar 

  • Melzer, S., Kampmann, G., Chandler, J. and Apel, K. 1999. FPF1 modulates the competence to flowering in Arabidopsis. Plant J. 18: 394–405.

    Article  Google Scholar 

  • Melzer, S., Majewski, D.M. and Apel, K. 1990. Early changes in gene expression during the transition from vegetative to generative growth in the long-day plant Sinapis alba. Plant Cell 2: 953–961.

    Article  PubMed  Google Scholar 

  • Metzger, J.D. 1995. Hormones and reproductive development. In P.J. Davies, (Ed.), Plant Hormones. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 617–648.

    Google Scholar 

  • Montgomery, B.L., Franklin, K.A., Terry, M.J., Thomas, B., Jackson, S.D., Crepeau, M.W. and Lagarias, J.C. 2001. Biliverdin reductase-induced phytochrome chromophore deficiency in transgenic tobacco. Plant Physiol. 125: 266–277.

    Article  PubMed  Google Scholar 

  • Moon, J., Suh, S-S., Lee, H., Choi, K-R., Hong, C.B., Paek, N.-C., Kim, S.-G. and Lee, I. 2003. The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J. 35: 613–623.

    Article  PubMed  Google Scholar 

  • Mouradov, A., Cremer, F. and Coupland, G. 2002. Control of flowering time: interacting pathways as a basis for diversity. Plant Cell, S111-S130.

  • Reed, J.W., Foster, K.R., Morgan, P.W. and Chory, J. 1996. Phytochrome B affects responsiveness to gibberellins in Arabidopsis. Plant Physiol. 112: 337–342.

    Article  PubMed  Google Scholar 

  • Reeves, P.H. and Coupland, G. 2001. Analysis of flowering time control in Arabidopsis by comparison of double and triple mutants. Plant Physiol. 126: 1085–1091.

    Article  PubMed  Google Scholar 

  • Samach, A., Onouchi, H., Gold, S.E., Ditta, G.S., Schwarz-Sommer, Z., Yanofsky, M.F. and Coupland, G. 2000.Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288: 1613–1616.

    Article  PubMed  Google Scholar 

  • Schmid, M., Uhlenhaut, N.H., Godard, F., Demar, M., Bressan, R., Weigel, D. and Lohmann, J.U. 2003. Dissection of floral induction pathways using global expression analysis. Development 130: 6001–6012.

    Article  PubMed  Google Scholar 

  • Simpson, G.G. and Dean, C. 2002. Arabidopsis, the rosetta stone of flowering time. Science 296: 285–289.

    Article  PubMed  Google Scholar 

  • Thomas, B. and Vince-Prue, D. 1997. Photoperiodism in Plants. Academic Press, New York.

    Google Scholar 

  • Weigel, D., Alvarez, J., Smyth, D.R., Yanofsky, M.F. and Meyerowitz E.M. 1992. LEAFY controls floral meristem identity in Arabidopsis. Cell, 69: 843–59.

    Article  PubMed  Google Scholar 

  • Wilson, R.N., Heckman, J.W. and Somerville, C.R. 1992. Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiol. 100: 403–408.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smykal, P., Gleissner, R., Corbesier, L. et al. Modulation of flowering responses in different Nicotiana varieties. Plant Mol Biol 55, 253–262 (2004). https://doi.org/10.1007/s11103-004-0557-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-004-0557-8

Navigation