Skip to main content
Log in

Expression Profiles of 10,422 Genes at Early Stage of Low Nitrogen Stress in Rice Assayed using a cDNA Microarray

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Development of crop varieties with high nitrogen use efficiency (NUE) is imperative for sustainable agriculture. Understanding how plant genes respond to low N stress is essential for formulating approaches to manipulating genes for improving NUE. In this study we analyzed the expression profiles of an indica rice cultivar Minghui 63 at seedling stage at 20 min, 1 and 2 h after low N stress with the normal N as the control, using a microarray of 11,494 rice ESTs representing 10,422 unique genes. While no significant difference was detected in the leaf tissue, a total of 471 ESTs were detected as responsive to low N stress in the root tissue with 115 ESTs showing up-regulation and 358 ESTs showing down-regulation. The analysis of expression profiles after low N stress identified following patterns: (1) the genes involved in photosynthesis and energy metabolism were down-regulated rapidly; (2) many of the genes involved in early responses to biotic and abiotic stresses were up-regulated while many other stress responsive genes were down-regulated; (3) regulatory genes including transcription factors and ones involved in signal transduction were both up- and down-regulated; and (4) the genes known to be involved in N uptake and assimilation showed little response to the low N stress. The challenges for future studies are to characterize the functional roles of the low N stress responsive genes in N metabolisms, including the large number of genes presently with unknown functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • R.D. Allen (1995) ArticleTitleDissection of oxidative stress tolerance using transgenic plants Plant Physiol. 107 1049–1054 Occurrence Handle1:CAS:528:DyaK2MXltVCmu7s%3D Occurrence Handle12228418

    CAS  PubMed  Google Scholar 

  • G. Bernier A. Havelange C. Houssa A. Petitjean P. Lejeune (1993) ArticleTitlePhysiological signals that induce flowering Plant Cell. 5 1147–1155 Occurrence Handle10.1105/tpc.5.10.1147 Occurrence Handle1:CAS:528:DyaK2cXntlaqtA%3D%3D Occurrence Handle12271018

    Article  CAS  PubMed  Google Scholar 

  • V. Buchanan-Wollaston (1994) ArticleTitleIsolation of cDNA clones for genes that are expressed during leaf senescence in Brassica napus Plant Physiol. 105 839–846 Occurrence Handle10.1104/pp.105.3.839 Occurrence Handle1:CAS:528:DyaK2cXlslGgsro%3D Occurrence Handle8058836

    Article  CAS  PubMed  Google Scholar 

  • W.H. Campbell (1988) ArticleTitleNitrate reductase and its role in nitrate assimilation in plants Physiol. Plant. 74 214–219 Occurrence Handle1:CAS:528:DyaL1cXmt1Klt70%3D

    CAS  Google Scholar 

  • W.H. Campbell (1999) ArticleTitleNitrate reductase structure, function and regulation: bridging the gap between biochemistry and physiology Annu. Rev. Plant Physiol. Plant Mol. Biol. 50 277–303 Occurrence Handle10.1146/annurev.arplant.50.1.277 Occurrence Handle1:CAS:528:DyaK1MXkt1yksbw%3D Occurrence Handle15012211

    Article  CAS  PubMed  Google Scholar 

  • W. Chen N.J. Provart J. Glazebrook F. Katagiri H.S. Chang T. Eulgem F. Mauch S. Luan G. Zou S.A. Whitham et al. (2002) ArticleTitleExpression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses Plant Cell. 14 559–574 Occurrence Handle10.1105/tpc.010410 Occurrence Handle1:CAS:528:DC%2BD38XivVegt7g%3D Occurrence Handle11910004

    Article  CAS  PubMed  Google Scholar 

  • Z.H. Chu K.M. Peng L.D. Zhang B. Zhou J. Wei S.P. Wang (2003) ArticleTitleConstruction and characterization of a normalized whole-life-cycle cDNA library of rice Chinese Sci. Bull. 48 229–235 Occurrence Handle10.1360/03tb9047 Occurrence Handle1:CAS:528:DC%2BD3sXis1OrsbY%3D

    Article  CAS  Google Scholar 

  • N.M. Crawford A.D.M. Glass (1998) ArticleTitleMolecular and physiological aspects of nitrate uptake in plants Trends Plant Sci. 3 389–395 Occurrence Handle10.1016/S1360-1385(98)01311-9

    Article  Google Scholar 

  • R.A. Dixon C.J. Lamb (1990) ArticleTitleMolecular communications in interactions between plants and microbial pathogens Annu. Rev. Plant Physiol. Plant Mol. Biol. 41 339–367 Occurrence Handle10.1146/annurev.pp.41.060190.002011 Occurrence Handle1:CAS:528:DyaK3cXksFGku74%3D

    Article  CAS  Google Scholar 

  • S. Dudoit Y.H. Yang M.J. Callow T.P. Speed (2002) ArticleTitleStatistical methods for identifying differential expressed genes in replicated cDNA microarray experiments Statistical Sinica. 12 111–139

    Google Scholar 

  • A.P. Feinberg B. Vogelstein (1983) ArticleTitleA technique for radiolabelling DNA restriction fragment length polymorphisms to high specific activity Anal. Biochem. 132 6–13 Occurrence Handle10.1016/0003-2697(83)90418-9 Occurrence Handle1:CAS:528:DyaL3sXksV2qs7c%3D Occurrence Handle6312838

    Article  CAS  PubMed  Google Scholar 

  • Q. Feng Y.J. Zhang P. Hao et al. (2002) ArticleTitleSequence and analysis of rice chromosome 4 Nature. 420 316–320 Occurrence Handle10.1038/nature01183 Occurrence Handle1:CAS:528:DC%2BD38XovVektL8%3D Occurrence Handle12447439

    Article  CAS  PubMed  Google Scholar 

  • B.G. Forde (2000) ArticleTitleNitrate transporters in plants: structure, function and regulation Biochem. Biophys. Acta. 1465 219–235 Occurrence Handle1:CAS:528:DC%2BD3cXit1Wgt74%3D Occurrence Handle10748256

    CAS  PubMed  Google Scholar 

  • B.G. Forde D.T. Clarkson (1999) ArticleTitleNitrate and ammonium nutrition of plants: physiological and molecular perspectives Adv. Bot. Res. 30 1–90 Occurrence Handle1:CAS:528:DC%2BD3cXltl2rtA%3D%3D Occurrence Handle10.1016/S0065-2296(08)60226-8

    Article  CAS  Google Scholar 

  • C.R. Frink P.E. Waggoner J.H. Ausubel (1999) ArticleTitleNitrogen fertilizer: retrospect and prospect Proc. Natl Acad. Sci. USA. 96 1175–1180 Occurrence Handle10.1073/pnas.96.4.1175 Occurrence Handle1:CAS:528:DyaK1MXhsFSrtr0%3D Occurrence Handle9989997

    Article  CAS  PubMed  Google Scholar 

  • A. Galvan E. Fernandez (2001) ArticleTitleEukaryotic nitrate and nitrite transporters Cell. Mol. Life Sci. 58 225–233 Occurrence Handle10.1007/PL00000850 Occurrence Handle1:CAS:528:DC%2BD3MXivFOlt70%3D Occurrence Handle11289304

    Article  CAS  PubMed  Google Scholar 

  • S. Gazzarini L. Lejay A. Gojon O. Ninnemann W.B. Frommer Á n, N. VonWire (1999) ArticleTitleThree functional transporters for constitutive, diurnally regulated, and starvation-induced uptake of ammonium into Arabidopsis roots Plant Cell. 11 937–947 Occurrence Handle10.1105/tpc.11.5.937

    Article  Google Scholar 

  • InstitutionalAuthorNameGene Ontology Consortium, (2001) ArticleTitleCreating the gene ontology resource: design and implementation Genome Res 11 1425–1433 Occurrence Handle10.1101/gr.180801

    Article  Google Scholar 

  • P. Geoffroy M. Legrand B. Fritig (1990) ArticleTitleIsolation and characterization of a proteinaceous inhibitor of microbial proteinases induced during the hypersensitive reaction of tobacco to tobacco mosaic virus Mol. Plant-Microbe Interact. 3 327–333 Occurrence Handle1:CAS:528:DyaK3MXltV2itLg%3D Occurrence Handle2134857

    CAS  PubMed  Google Scholar 

  • A.D.M. Glass D.T. Brito B.N. Kaiser H.J. Kronzucker A. Kumar M. Okamoto S.R. Rawat M.Y. Siddiqi S.M. Silim J.J. Vidmar D. Zhuo (2001) ArticleTitleNitrogen transport in plants, with an emphasis on the regulation of fluxes to match plant demand J. Plant Nutr. Soil Sci. 164 199–207 Occurrence Handle10.1002/1522-2624(200104)164:2<199::AID-JPLN199>3.0.CO;2-K Occurrence Handle1:CAS:528:DC%2BD3MXjtlOrtLk%3D

    Article  CAS  Google Scholar 

  • T.C. Granato C.D. Raper (1989) ArticleTitleProliferation of maize (Zea mays L.) roots in response to localized supply of nitrate J. Exp. Bot. 40 263–275 Occurrence Handle1:CAS:528:DyaL1MXktVCgtb0%3D Occurrence Handle11542157

    CAS  PubMed  Google Scholar 

  • J.P. Hammond M.J. Bennett H.C. Bowen M.R. Broadley D.C. Eastwood T.M. May C. Rahn R. Swarup K.E. Woolaway P.J. White (2003) ArticleTitleChanges in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants Plant Physiol. 132 578–596 Occurrence Handle10.1104/pp.103.020941 Occurrence Handle1:CAS:528:DC%2BD3sXkslersbo%3D Occurrence Handle12805589

    Article  CAS  PubMed  Google Scholar 

  • S.L. Harmer J.B. Hogenesch M. Straume H.S. Chang B. Han T. Zhu X. Wang J.A. Kreps S.A. Kay (2000) ArticleTitleOrchestrated transcription of key pathways in Arabidopsis by the circadian clock Science 290 2110–2113 Occurrence Handle10.1126/science.290.5499.2110 Occurrence Handle1:CAS:528:DC%2BD3cXptVyisrw%3D Occurrence Handle11118138

    Article  CAS  PubMed  Google Scholar 

  • C.S. Hill R. Treisman (1995) ArticleTitleTranscriptional regulation by extracellular signals: mechanisms and specificity Cell 80 199–211 Occurrence Handle10.1016/0092-8674(95)90403-4 Occurrence Handle1:CAS:528:DyaK2MXjtlGnsr0%3D Occurrence Handle7834740

    Article  CAS  PubMed  Google Scholar 

  • K. Himanen M. Vuylsteke S. Vanneste S. Vercruysse E. Boucheron P. Alard D. Chriqui M.V. Montagu D. Inze T. Beeckman (2004) ArticleTitleTranscript profiling of early lateral root initiation Proc. Natl. Acad. Sci. USA. 101 5146–5151 Occurrence Handle10.1073/pnas.0308702101 Occurrence Handle1:CAS:528:DC%2BD2cXjsFCitro%3D Occurrence Handle15051881

    Article  CAS  PubMed  Google Scholar 

  • K. Hirano T. Teraoka H. Yamanaka A. Harashima A. Kunisaki H. Takahashi D. Hosokawa (2000) ArticleTitleNovel mannose-binding rice lectin composed of some isolectins and its relation to a stress-inducible salt gene Plant Cell Physiol. 41 258–267 Occurrence Handle1:CAS:528:DC%2BD3cXitFegt7c%3D Occurrence Handle10805588

    CAS  PubMed  Google Scholar 

  • B. Hirel P.J. Lea (2001) Ammonia assimilation P.J. Lea J.-F. Morot-Gaudry (Eds) Plant Nitrogen Springer-Verlag Berlin 79–99

    Google Scholar 

  • S.M. Howitt M.K. Udvardi (2000) ArticleTitleStructure, function and regulation of ammonium transporters in plants Biochem. Biophys. Acta. 1465 152–170 Occurrence Handle1:CAS:528:DC%2BD3cXit1Wgtrg%3D Occurrence Handle10748252

    CAS  PubMed  Google Scholar 

  • T. Hunter M. Karin (1992) ArticleTitleThe regulation of transcription by phosphorylation Cell. 70 375–387 Occurrence Handle10.1016/0092-8674(92)90162-6 Occurrence Handle1:CAS:528:DyaK38XmtVGqt70%3D Occurrence Handle1643656

    Article  CAS  PubMed  Google Scholar 

  • K.R. Jaglo-Ottosen S.J. Gilmour D.G. Zarka O. Schabenberger M.F. Thomashow (1998) ArticleTitle Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance Science 280 104–106 Occurrence Handle10.1126/science.280.5360.104 Occurrence Handle1:CAS:528:DyaK1cXitlWrsrY%3D Occurrence Handle9525853

    Article  CAS  PubMed  Google Scholar 

  • W.M. Kaiser A. Kandlbinder M. Stoimenova J. Glaab (2000) ArticleTitleDiscrepancy between nitrate reduction rates in intact leaves and nitrate reductase activity in leaf extracts: what limits nitrate reduction in situ? Planta 210 801–807 Occurrence Handle10.1007/s004250050682 Occurrence Handle1:CAS:528:DC%2BD3cXit1Gjtb8%3D Occurrence Handle10805452

    Article  CAS  PubMed  Google Scholar 

  • M. Kasuga Q. Liu S. Miura K. Yamaguchi-Shinozaki K. Shinozaki (1999) ArticleTitleImproving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor Nat. Biotechnol. 17 287–291 Occurrence Handle10.1038/7036 Occurrence Handle1:CAS:528:DyaK1MXhs1Chu78%3D Occurrence Handle10096298

    Article  CAS  PubMed  Google Scholar 

  • S. Kauffmann M. Legrand P. Geoffroy B. Fritig (1987) ArticleTitleBiological function of “pathogenesis-related” proteins: four proteins of tobacco have 1, 3-P-glucanase activity EMBO J. 6 3209–3212 Occurrence Handle1:CAS:528:DyaL1cXjtl2gtw%3D%3D Occurrence Handle16453802

    CAS  PubMed  Google Scholar 

  • S. Kawasaki C. Borchert M. Deyholos H. Wang S. Brazille K. Kawai D. Galbraith H. Bohnert (2001) ArticleTitleGene expression profiles during the initial phase of salt stress in rice Plant Cell. 13 889–905 Occurrence Handle10.1105/tpc.13.4.889 Occurrence Handle1:CAS:528:DC%2BD3MXjtFajsrw%3D Occurrence Handle11283343

    Article  CAS  PubMed  Google Scholar 

  • S. Kikuchi K. Satoh T. Nagata et al. (2003) ArticleTitleCollection, mapping, and annotation of over 28,000 cDNA clones from japonica rice Science. 301 376–379 Occurrence Handle10.1126/science.1081288 Occurrence Handle12869764

    Article  PubMed  Google Scholar 

  • H.M. Lam K.T. Coschigano I.C. Oliveira R. Melooliveira G.M. Coruzzi (1996) ArticleTitleThe molecular-genetics of nitrogen assimilation into amino acids in higher plants Annu. Rev. Plant Physiol. Plant Mol. Biol. 47 569–593 Occurrence Handle10.1146/annurev.arplant.47.1.569 Occurrence Handle1:CAS:528:DyaK28XjtlWgt74%3D Occurrence Handle15012301

    Article  CAS  PubMed  Google Scholar 

  • M. Legrand S. Kauffmann P. Geoffroy B. Fritig (1987) ArticleTitleBiological function of pathogenesis-related proteins: four tobacco pathogenesis-related proteins are chitinases Proc. Natl. Acad. Sci. USA. 84 6750–6754 Occurrence Handle1:CAS:528:DyaL1cXhvVagsA%3D%3D Occurrence Handle16578819

    CAS  PubMed  Google Scholar 

  • H.J.M. Linthorst (1991) ArticleTitlePathogenesis-related proteins of plants Crit. Rev. Plant Sci. 10 113–150

    Google Scholar 

  • K. Maleck A. Levine T. Eulgem A. Morgan J. Schmid K.A. Lawton J.L. Dangl R.A. Dietrich (2000) ArticleTitleThe transcriptome of Arabidopsis thaliana during systemic acquired resistance Nat. Genet. 26 403–410 Occurrence Handle10.1038/82521 Occurrence Handle1:CAS:528:DC%2BD3cXptVWgsbk%3D Occurrence Handle11101835

    Article  CAS  PubMed  Google Scholar 

  • L. Ma Y. Gao L. Qu Z. Chen J. Li H. Zhao X.W. Deng (2002) ArticleTitleGenomic evidence for COP1 as repressor of light regulated gene expression and development in Arabidopsis Plant Cell. 14 2383–2398 Occurrence Handle10.1105/tpc.004416 Occurrence Handle1:CAS:528:DC%2BD38XotFels7g%3D Occurrence Handle12368493

    Article  CAS  PubMed  Google Scholar 

  • H. Marschner V. Römheld W.J. Horst P. Martin (1986) ArticleTitleRoot-induced changes in the rhizosphere: importance of the mineral nutrition in plants Z. Pflanzenernähr. Bodenk. 149 441–456 Occurrence Handle1:CAS:528:DyaL28Xltlartb0%3D

    CAS  Google Scholar 

  • T. Martin O. Oswald I.A. Graham (2002) ArticleTitle Arabidopsis seedling growth, storage lipid mobilization, and photosynthetic gene expression are regulated by carbon:nitrogen availability Plant Physiol. 128 472–481 Occurrence Handle10.1104/pp.128.2.472 Occurrence Handle1:CAS:528:DC%2BD38XhsVSru7w%3D Occurrence Handle11842151

    Article  CAS  PubMed  Google Scholar 

  • R. Mittler (2002) ArticleTitleOxidative stress, antioxidants and stress tolerance Trends Plant Sci. 7 405–410 Occurrence Handle10.1016/S1360-1385(02)02312-9 Occurrence Handle1:CAS:528:DC%2BD38XntVWnu7Y%3D Occurrence Handle12234732

    Article  CAS  PubMed  Google Scholar 

  • H. Mori K. Higo H. Higo Y. Minobe H. Matsui S. Chiba (1992) ArticleTitleNucleotide and derived amino acid sequence of a catalase cDNA isolated from rice immature seeds Plant Mol. Biol. 18 973–976 Occurrence Handle10.1007/BF00019211 Occurrence Handle1:CAS:528:DyaK3sXitVygtbo%3D Occurrence Handle1581574

    Article  CAS  PubMed  Google Scholar 

  • S. Morita M. Tasaka H. Fujisawa T. Ushimaru H. Tsuji (1994) ArticleTitleA cDNA clone encoding a rice catalase isozyme Plant Physiol. 105 1015–1016 Occurrence Handle10.1104/pp.105.3.1015 Occurrence Handle1:CAS:528:DyaK2cXlslWrsb4%3D Occurrence Handle8058828

    Article  CAS  PubMed  Google Scholar 

  • T. Nanjo M. Kobayashi Y. Yoshiba S. Yukika W. Keishiro H. Tsukaya Y. Kakubari K. Yamaguchi-Shinozaki K. Shinozaki (1999) ArticleTitleBiological functions of proline in morphogenesis and osotolerance revealed in antisense transgenic Arabidopsis thaliana Plant J. 18 185–193 Occurrence Handle10.1046/j.1365-313X.1999.00438.x Occurrence Handle1:CAS:528:DyaK1MXjs1antro%3D Occurrence Handle10363370

    Article  CAS  PubMed  Google Scholar 

  • W. Ni R.N. Trelease (1991) ArticleTitlePost-transcriptional regulation of catalase isozyme expression in cotton seeds Plant Cell. 3 737–744 Occurrence Handle10.1105/tpc.3.7.737 Occurrence Handle1:CAS:528:DyaK3MXlsl2ntro%3D Occurrence Handle12324611

    Article  CAS  PubMed  Google Scholar 

  • E. Okuma K. Soeda M. Tada Y. Murata (2000) ArticleTitleExogenous proline mitigates the inhibition of growth of Nicotiana tabacum cultured cells under saline conditions Soil Sci. Plant Nutr. 46 257–263 Occurrence Handle1:CAS:528:DC%2BD3cXitVCntb8%3D

    CAS  Google Scholar 

  • P.M. Palenchar A. Kouranov L.V. Lejay G.M. Coruzzi (2004) ArticleTitleGenome-wide patterns of carbon and nitrogen regulation of gene expression validate the combined carbon and nitrogen (CN)-signaling hypothesis in plants Genome Biol. 5 R91 Occurrence Handle15535867

    PubMed  Google Scholar 

  • J. Perozich H. Nicholas R. Lindahl J. Hempel (1999) The big book of aldehyde dehydrogenase sequences. An overview of the extended family H. Weiner (Eds) et al. Advances in Experimental Medicine and Biology (Volume 463) Kluwer Academic/Plenum Publishers New York, USA 1–7

    Google Scholar 

  • J. Price A. Laxmi S.K. St Martin J.C. Jang (2004) ArticleTitleGlobal transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis Plant Cell. 16 2128–2150 Occurrence Handle10.1105/tpc.104.022616 Occurrence Handle1:CAS:528:DC%2BD2cXmvVantrw%3D Occurrence Handle15273295

    Article  CAS  PubMed  Google Scholar 

  • M.G. Redinbaugh W.H. Campbell (1998) ArticleTitleNitrate regulation of the oxidative pentose phosphate pathway in maize (Zea mays L.) root plastids: Induction of 6-phosphogluconate dehydrogenase activity, protein and transcript levels Plant Sci. 134 129–140 Occurrence Handle10.1016/S0168-9452(98)00048-X Occurrence Handle1:CAS:528:DyaK1cXks1Omsrw%3D

    Article  CAS  Google Scholar 

  • M.G. Redinbaugh G.J. Wadsworth J.G. Scandalios (1988) ArticleTitleCharacterization of catalase transcript and their differential expression in maize Biochem. Biophys. Acta. 951 104–116 Occurrence Handle1:CAS:528:DyaL1MXksFWnsrY%3D Occurrence Handle2461221

    CAS  PubMed  Google Scholar 

  • J.G. Scandalios (1990) ArticleTitleResponse of plant antioxidant defence genes to environmental stress Adv. Genet. 28 1–41 Occurrence Handle1:CAS:528:DyaK3MXnsFylsw%3D%3D Occurrence Handle2239448 Occurrence Handle10.1016/S0065-2660(08)60522-2

    Article  CAS  PubMed  Google Scholar 

  • T. Sasaki T. Matsumoto K. Yamamoto et al. (2002) ArticleTitleThe genome sequence and structure of rice chromosome 1 Nature 420 312–316 Occurrence Handle10.1038/nature01184 Occurrence Handle1:CAS:528:DC%2BD38XovVektLw%3D Occurrence Handle12447438

    Article  CAS  PubMed  Google Scholar 

  • W.-R. Scheible R. Morcuende T. Czechowski C. Fritz D. Osuna N. Palacios-Rojas D. Schindelasch O. Thimm M.K. Udvardi M. Stitt (2004) ArticleTitleGenome-wide reprogramming of primary and secondary metabolism, protein synthesis, celluar growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen Plant Physiol. 136 2483–2499 Occurrence Handle10.1104/pp.104.047019 Occurrence Handle1:CAS:528:DC%2BD2cXnvFOrtbc%3D Occurrence Handle15375205

    Article  CAS  PubMed  Google Scholar 

  • M. Schena D. Shalon R.W. Davis P.O. Brown (1995) ArticleTitleQuantitative monitoring of gene expression patterns with a complimentary DNA microarray Science 270 467–470 Occurrence Handle1:CAS:528:DyaK2MXovVersLk%3D Occurrence Handle7569999

    CAS  PubMed  Google Scholar 

  • M. Seki M. Narusaka H. Abe M. Kasuko K. Yamaguchi-Shinozaki P. Carninci Y. Hayashizaki K. Shinozaki (2001) ArticleTitleMonitoring the expression pattern of 1,300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray Plant Cell. 13 61–72 Occurrence Handle10.1105/tpc.13.1.61 Occurrence Handle1:CAS:528:DC%2BD3MXjslCrtr0%3D Occurrence Handle11158529

    Article  CAS  PubMed  Google Scholar 

  • M. Seki M. Narusaka J. Ishida et al. (2002) ArticleTitleMonitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray Plant J. 31 279–292 Occurrence Handle10.1046/j.1365-313X.2002.01359.x Occurrence Handle1:CAS:528:DC%2BD38XntFelsLg%3D Occurrence Handle12164808

    Article  CAS  PubMed  Google Scholar 

  • R. Shin D.P. Schachtman (2004) ArticleTitleHydrogen peroxide mediates plant root cell response to nutrient deprivation Proc. Natl. Acad. Sci. USA. 101 8827–8832 Occurrence Handle10.1073/pnas.0401707101 Occurrence Handle1:CAS:528:DC%2BD2cXltFKkt7w%3D Occurrence Handle15173595

    Article  CAS  PubMed  Google Scholar 

  • K. Shinozaki K. Yamaguchi-Shinozaki (2000) ArticleTitleMolecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways Curr. Opin. Plant Biol. 3 217–223 Occurrence Handle1:CAS:528:DC%2BD3cXktVOnsrk%3D Occurrence Handle10837265

    CAS  PubMed  Google Scholar 

  • R.H. Socolow (1999) ArticleTitleNitrogen management and the future of food: lessons from the management of energy and carbon Proc. Natl. Acad. Sci. USA. 96 6001–6008 Occurrence Handle10.1073/pnas.96.11.6001 Occurrence Handle1:CAS:528:DyaK1MXksFKlurY%3D Occurrence Handle10339531

    Article  CAS  PubMed  Google Scholar 

  • J.C. Steffens (1990) ArticleTitleThe heavy metal-binding peptides of plants Annu. Rev. Plant Mo1. Biol. 41 553–575 Occurrence Handle1:CAS:528:DyaK3cXksFGku70%3D

    CAS  Google Scholar 

  • M. Stitt (1999) ArticleTitleNitrate regulation of metabolism and growth Curr. Opin. Plant Biol. 2 178–186 Occurrence Handle10.1016/S1369-5266(99)80033-8 Occurrence Handle1:CAS:528:DyaK1MXkt1Cgs7w%3D Occurrence Handle10375569

    Article  CAS  PubMed  Google Scholar 

  • R. Sunkar D. Bartels H.H. Kirch (2003) ArticleTitleOverexpression of a stress-inducible aldehyde dehydrogenase gene from Arabidopsis thaliana in transgenic plants improves stress tolerance Plant J. 35 452–464 Occurrence Handle10.1046/j.1365-313X.2003.01819.x Occurrence Handle1:CAS:528:DC%2BD3sXnsFyitLo%3D Occurrence Handle12904208

    Article  CAS  PubMed  Google Scholar 

  • C.-A. Tsai Y.-J. Chen J.J. Chen (2003) ArticleTitleTesting for differentially expressed genes with microarray data Nucleic Acids Res. 31 N9 Occurrence Handle10.1093/nar/gkg819 Occurrence Handle1:CAS:528:DC%2BD3sXos1amsrw%3D

    Article  CAS  Google Scholar 

  • J.M. Tepperman T. Zhu H.S. Chang X. Wang P.H. Quail (2001) ArticleTitleMultiple transcription-factor genes are early targets of phytochrome A signaling Proc. Natl. Acad. Sci. USA. 98 9437–9442 Occurrence Handle10.1073/pnas.161300998 Occurrence Handle1:CAS:528:DC%2BD3MXlvFSrtrg%3D Occurrence Handle11481498

    Article  CAS  PubMed  Google Scholar 

  • InstitutionalAuthorNameThe Rice Chromosome 10 Sequencing Consortium. (2003) ArticleTitleIn-depth view of structure, activity, and evolution of rice chromosome 10 Science 300 1566–1569 Occurrence Handle10.1126/science.1083523 Occurrence Handle1:CAS:528:DC%2BD3sXktlKrurs%3D

    Article  CAS  Google Scholar 

  • U. Treier S. Fuchs M. Weber W.W. Wakarchuk C.F. Beck (1989) ArticleTitleGametic differentiation in Chlamydomonas reinhardtii: light dependence and gene expression patterns Arch. Microbiol. 152 572–577 Occurrence Handle10.1007/BF00425489

    Article  Google Scholar 

  • InstitutionalAuthorNameUNEP (1999) Global Environment Outlook 2000 United Nations Environment Programme and London Earthscan Nairobi, Kenya

    Google Scholar 

  • M. Leij ParticleVan der S.J. Smith A.J. Miller (1998) ArticleTitleRemobilisation of vacuolar stored nitrate in barley roots cells Planta 205 64–72 Occurrence Handle10.1007/s004250050297

    Article  Google Scholar 

  • R. Wang K. Guegler S.T. Labrie N.M. Crawford (2000) ArticleTitleGenomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate Plant Cell. 12 1491–1509 Occurrence Handle10.1105/tpc.12.8.1491 Occurrence Handle1:CAS:528:DC%2BD3cXmsVyjsbs%3D Occurrence Handle10948265

    Article  CAS  PubMed  Google Scholar 

  • R. Wang M. Okamoto X. Xing N.M. Crawford (2003) ArticleTitleMicroarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose, trehalose−6-phosphate, iron, and sulfate metabolism Plant Physiol. 132 556–567 Occurrence Handle10.1104/pp.103.021253 Occurrence Handle1:CAS:528:DC%2BD3sXkslersbw%3D Occurrence Handle12805587

    Article  CAS  PubMed  Google Scholar 

  • R. Wang R. Tischner R.A. Gutierrez M. Hoffman X. Xing M. Chen G. Coruzzi N.M. Crawford (2004) ArticleTitleGenomic analysis of the nitrate response using a nitrate reductase-null mutant of Arabidopsis Plant Physiol. 136 2512–2522 Occurrence Handle10.1104/pp.104.044610 Occurrence Handle1:CAS:528:DC%2BD2cXnvFOrur8%3D Occurrence Handle15333754

    Article  CAS  PubMed  Google Scholar 

  • A.V.D. Werf D. Raaimakers P. Poot H. Lambers (1988) ArticleTitleRespiratory energy costs for the maintenance of biomass, for growth and for iron uptake in roots of Carex diandra and Carex acutiformis Physiol. Plant. 72 483–491

    Google Scholar 

  • L.E. Williams A.J. Miller (2001) ArticleTitleTransporters responsible for the uptake and partitioning of nitrogenous solutes Annu. Rev. Plant Physiol. Plant Mol. Biol. 52 659–688 Occurrence Handle10.1146/annurev.arplant.52.1.659 Occurrence Handle1:CAS:528:DC%2BD3MXkslWgtr4%3D Occurrence Handle11337412

    Article  CAS  PubMed  Google Scholar 

  • A.J. Whitmarsh R.J. Davis (2000) ArticleTitleRegulation of transcription factor function by phosphorylation Cell. Mol. Life Sci. 57 1172–1183 Occurrence Handle10.1007/PL00000757 Occurrence Handle1:CAS:528:DC%2BD3cXmsFWgtrY%3D Occurrence Handle11028910

    Article  CAS  PubMed  Google Scholar 

  • P. Wu L. Ma X. Hou M. Wang Y. Wu F. Liu X.W. Deng (2003) ArticleTitlePhosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves Plant Physiol. 132 1260–1271 Occurrence Handle10.1104/pp.103.021022 Occurrence Handle1:CAS:528:DC%2BD3sXlsFGhtLo%3D Occurrence Handle12857808

    Article  CAS  PubMed  Google Scholar 

  • P.H. Yancey M.E. Clark S.C. Hand R.D. Bowlus G.N. Somero (1982) ArticleTitleLiving with water stress: evolution of osmolyte systems Science. 217 1214–1222 Occurrence Handle1:CAS:528:DyaL38XlsFyisbw%3D Occurrence Handle7112124

    CAS  PubMed  Google Scholar 

  • S. Yoshida D.A. Forno J.H. Cook K.A. Gomez (1976) Laboratory Manual for Physiological Studies of Rice EditionNumber3 International Rice Research Institute Manila

    Google Scholar 

  • H. Zhang B.G. Forde (2000) ArticleTitleRegulation of Arabidopsis root development by nitrate availability J. Exp. Bot. 51 51–59 Occurrence Handle10.1093/jexbot/51.342.51 Occurrence Handle1:CAS:528:DC%2BD3cXpslKjtg%3D%3D Occurrence Handle10938795

    Article  CAS  PubMed  Google Scholar 

  • J. Zhang Q. Feng C. Jin D. Qiu L. Zhang K. Xie D. Yuan B. Han Q. Zhang S. Wang (2005) ArticleTitleFeatures of the expressed sequences revealed by a large-scale analysis of ESTs from a normalized cDNA library of the elite indica rice cultivar Minghui 63 Plant J. 42 772–780 Occurrence Handle10.1111/j.1365-313X.2005.02408.x Occurrence Handle1:CAS:528:DC%2BD2MXlt1yns7Y%3D Occurrence Handle15918889

    Article  CAS  PubMed  Google Scholar 

  • Z. Zhu (2000) ArticleTitleLoss of fertilizer N from plant–soil system and the strategies and techniques for its reduction (in Chinese with English abstract) Soil Environ. Sci. 9 1–6 Occurrence Handle1:CAS:528:DC%2BD3cXmsV2gtbo%3D

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qifa Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lian, X., Wang, S., Zhang, J. et al. Expression Profiles of 10,422 Genes at Early Stage of Low Nitrogen Stress in Rice Assayed using a cDNA Microarray. Plant Mol Biol 60, 617–631 (2006). https://doi.org/10.1007/s11103-005-5441-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-005-5441-7

Keywords

Navigation