Skip to main content
Log in

Expressed Sequence Tags from loblolly pine embryos reveal similarities with angiosperm embryogenesis

  • Original Paper
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The process of embryogenesis in gymnosperms differs in significant ways from the more widely studied process in angiosperms. To further our understanding of embryogenesis in gymnosperms, we have generated Expressed Sequence Tags (ESTs) from four cDNA libraries constructed from un-normalized, normalized, and subtracted RNA populations of zygotic and somatic embryos of loblolly pine (Pinus taeda L.). A total of 68,721 ESTs were generated from 68,131 cDNA clones. Following clustering and assembly, these sequences collapsed into 5,274 contigs and 6,880 singleton sequences for a total of 12,154 non-redundant sequences. Searches of a non-identical amino acid database revealed a putative homolog for 9,189 sequences, leaving 2,965 sequences with no known function. More extensive searches of additional plant sequence data sets revealed a putative homolog for all but 1,388 (11.4%) of the sequences. Using gene ontologies, a known function could be assigned for 5,495 of the 12,154 total non-redundant sequences with 13,633 associations in total assigned. When compared to ∼72,000 sequences in a collated P. taeda transcript assembly derived from >245,000 ESTs derived from root, xylem, stem, needles, pollen cone, and shoot ESTs, 3,458 (28.5%) of the non-redundant embryo sequences were unique and thereby provide a valuable addition to development of a complete loblolly pine transcriptome. To assess similarities between angiosperm and gymnosperm embryo development, we examined our EST collection for putative homologs of angiosperm genes implicated in embryogenesis. Out of 108 angiosperm embryogenesis-related genes, homologs were present for 83 of these genes suggesting that pine contains similar genes for embryogenesis and that our RNA sampling methods were successful. We also identified sequences from the pine embryo transcriptome that have no known function and may contribute to the programming of gene expression and embryo development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adams MD, Soares MB, Kerlavage AR, Fields C, Venter JC (1993) Rapid cDNA sequencing (Expressed Sequence Tags) from a directionally cloned human infant brain cDNA library. Nat Genet 4:373–380

    Article  PubMed  CAS  Google Scholar 

  • Allen KD (2002) Assaying gene content in Arabidopsis. Proc Natl Acad Sci USA 99:9568–9572

    Article  PubMed  CAS  Google Scholar 

  • Allona I, Quinn M, Shoop E, Swope K, St Cyr S, Carlis J, Riedl J, Retzel E, Campbell MM, Sederoff R, Whetten RW (1998) Analysis of xylem formation in pine by cDNA sequencing. Proc Natl Acad Sci USA 95:9693–9698

    Article  PubMed  CAS  Google Scholar 

  • Attree SM, Fowke LC (1993) Embryogeny of gymnosperms: advances in synthetic seed technology of conifers. Plant Cell Tiss Org Cult 35:1–35

    Article  CAS  Google Scholar 

  • Becwar MR, Nagmani R, Wann SR (1990) Initiation of embryogenic and somatic embryo development in loblolly pine (Pinus taeda). Can J For Res 20:810–817

    Google Scholar 

  • Becwar MR, Pullman GS (1995) Somatic embryogenesis in loblolly pine (Pinus taeda L.). In: Jain S, Gupta P, Newton RJ (eds) Somatic Embryogenesis in Woody plants, Vol 3. Kluwer, The Netherlands, pp 287–301

    Google Scholar 

  • Berleth T, Chatfield S (2002) Embryogenesis: pattern formation from a single cell. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. American Society of Plant Biologists, Rockville, MD, doi/10.1199/tab.0009, http://www.aspb.org/publications/arabidopsis/

    Google Scholar 

  • Berardini TZ, Mundodi S, Reiser L, Huala E, Garcia-Hernandez M, Zhang P, Mueller LA, Yoon J, Doyle A, Lander G et al (2004) Functional annotation of the Arabidopsis genome using controlled vocabularies. Plant Physiol 135:745–755

    Article  PubMed  CAS  Google Scholar 

  • Bonaldo MF, Lennon G, Soares MB (1996) Normalization and subtraction: two approaches to facilitate gene discovery. Gen Res 6:791–806

    CAS  Google Scholar 

  • Bowe LM, Coat G, dePamphilis CW (2000) Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales’ closest relatives are conifers. Proc Natl Acad Sci USA 97:4092–4097

    Article  PubMed  CAS  Google Scholar 

  • Bowman JL, Eshed Y, Baum SF (2002) Establishment of polarity in angiosperm lateral organs. Trends Genet 18:134–141

    Article  PubMed  CAS  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:114–117

    Google Scholar 

  • Chou HH, Holmes MH (2001) DNA sequence quality trimming and vector removal. Bioinformatics 17:1093–1104

    Article  PubMed  CAS  Google Scholar 

  • Ciavatta VT, Morillon R, Pullman GS, Chrispeels M, Cairney J (2001) An aquaglyceroporin is abundantly expressed early in the development of the suspensor and the embryo proper of loblolly pine (Pinus taeda L.). Plant Physiol 127:1556–1567

    Article  PubMed  CAS  Google Scholar 

  • Dantec LL, Chagne D, Pot D, Cantin O, Garnier-Gere P, Bedon F, Frigerio JM, Chaumeil P, Leger P, Garcia V, Laigret F, De Daruvar A, Plomion C (2004) Automated SNP detection in expressed sequence tags: statistical considerations and application to maritime pine sequences. Plant Mol Biol 54:461–470

    Article  PubMed  Google Scholar 

  • Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A, Baum SF, Bowman JL (2003) Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol 13:1768–1774

    Article  PubMed  CAS  Google Scholar 

  • Eshed Y, Baum SF, Perea JV, Bowman JL (2001) Establishment of polarity in lateral organs of plants. Curr Biol 11:1251–1260

    Article  PubMed  CAS  Google Scholar 

  • FAO (2004) Preliminary review of biotechnology in forestry, including genetic modification. Forest Genetic Resources Working Paper FGR/59E. Forest Resources Development Service, ForestResources Division. Rome, Italy. http://www.fao.org/documents/show_cdr.asp?url_file=/docrep/008/ae574e/ae574e00.htm

  • Fiers M, Golemiec E, Xu J, van der Geest L, Heidstra R, Stiekema W, Liu CM (2005) The 14-amino acid CLV3, CLE19, and CLE40 peptides trigger consumption of the root meristem in Arabidopsis through a CLAVATA2-dependent pathway. Plant Cell 17:2542–2553

    Article  PubMed  CAS  Google Scholar 

  • Filonova LH, von Arnold S, Daniel G, Bozhkov PV (2002)␣Programmed cell death eliminates all but one embryo in a polyembryonic plant seed. Cell Death Differ 9:1057–1062

    Article  PubMed  CAS  Google Scholar 

  • Grossniklaus U, Vielle-Calzada J-P, Hoeppner MA, Galiano WB (1998) Maternal control of embryogenesis by MEDEA, a Polycomb group gene in Arabidopsis. Science 280:446–450

    Article  PubMed  CAS  Google Scholar 

  • Guyomarc’h S, Bertrand C, Delarue M, Zhou DX (2005) Regulation of meristem activity by chromatin remodeling. Trends Plant Sci 10:332–338

    Article  PubMed  CAS  Google Scholar 

  • Haecker A, Groß-Hardt R, Geiges B, Sarkar A, Breuninger H, Herrmann M, Laux T (2004) Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 131:657–668

    Article  PubMed  CAS  Google Scholar 

  • Hegde P, Qi R, Abernathy K, Gay C, Dharap S, Gaspard R, Hughes JE, Snesrud E, Lee N, Quackenbush J (2000) A concise guide to cDNA microarray analysis. Biotechniques 29:548–550

    PubMed  CAS  Google Scholar 

  • Jürgens G, Mayer U (1994) Arabidopsis. In: Bard J (ed) Embryos: a colour atlas of developing embryos. Wolfe Publishing, London, pp 7–21

    Google Scholar 

  • Klass DL (2004) Biomass for renewable energy and fuels. Encyclopaedia Energy 1:193–212

    Article  Google Scholar 

  • Kirst M, Johnson AF, Baucom C, Ulrich E, Hubbard K, Staggs R, Paule C, Retzel E, Whetten R, Sederoff R (2003) Apparent homology of expressed genes from wood-forming tissues of loblolly pine (Pinus taeda L.) with Arabidopsis thaliana. Proc Natl Acad Sci USA 100:7383–7388

    Article  PubMed  Google Scholar 

  • Kuzoff RK, Gasser CS (2000) Recent progress in reconstructing angiosperm phylogeny. Trends Plant Sci 5:330–336

    Article  PubMed  CAS  Google Scholar 

  • Kwong RW, Bui AQ, Lee H, Kwong LW, Fischer RL, Goldberg RB, Harada JJ (2003) LEAFY COTYLEDON1-LIKE defines a class of regulators essential for embryo development. Plant Cell 15:5–18

    Article  PubMed  CAS  Google Scholar 

  • Liewlaksaneeyanawin C, Ritland CE, El-Kassaby YA, Ritland K (2004) Single-copy, species-transferable microsatellite markers developed from loblolly pine ESTs. Theor Appl Genet 109:361–369

    Article  PubMed  CAS  Google Scholar 

  • Lorenz WW, Sun F, Liang C, Kolychev D, Wang H, Zhao X, Cordonnier-Pratt M-M, Pratt LH, Dean JFD (2005) Water stress-responsive genes in loblolly pine (Pinus taeda) roots identified by analyses of expressed sequence tag libraries. Tree Physiol 26:1–16

    Google Scholar 

  • Lotan T, Ohto M, Yee KM, West MAL, Lo R, Kwong RW, Yamagishi K, Fischer RL, Goldberg RB (1998) Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93:1195–1205

    Article  PubMed  CAS  Google Scholar 

  • Lou M, Bilodeau P, Koltunow A, Dennis ES, Peacock WJ, Chaudhury AM (1999) Genes controlling fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci USA 96:296–301

    Article  Google Scholar 

  • McElver J, Tzafrir I, Aux G, Rogers R, Ashby C, Smith K, Thomas C, Schetter A, Zhou Q, Cushman MA et al (2001) Insertional mutagenesis of genes required for seed␣development in Arabidopsis thaliana. Genetics 159:1751–1763

    PubMed  CAS  Google Scholar 

  • Nagmani R, Diner AM, Garton S, Zipf AE (1995) Anatomical comparison of somatic and zygotic embryogeny in conifers. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic Embryogenesis in Woody plants. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Ohad N, Margossian L, Hsu Y-C, Williams C Repetti P, Fischer RL (1996) A mutation that allows endosperm development without fertilization. Proc Natl Acad Sci USA 93:4223–4228

    Article  Google Scholar 

  • Pavy N, Laroche J, Bousquet J, Mackay J (2005) Large-scale statistical analysis of secondary xylem ESTs in pine. Plant Mol Biol 57:203–224

    Article  PubMed  CAS  Google Scholar 

  • Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, Tsai J, Quackenbush J (2003) TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19:651–652

    Article  PubMed  CAS  Google Scholar 

  • Pullman G, Johnson S, Peter G, Cairney J, Xu N (2003) Improving loblolly pine somatic embryo maturation: comparison of somatic and zygotic embryo morphology, germination, and gene expression. Plant Cell Rep 21:747–758

    PubMed  CAS  Google Scholar 

  • Quackenbush J, Cho J, Lee D, Liang F, Holt I, Karamycheva S, Parvizi B, Pertea G, Sultana R, White J (2001) The TIGR Gene Indices: analysis of gene transcript sequences in highly sampled eukaryotic species. Nucleic Acids Res 29:159–164

    Article  PubMed  CAS  Google Scholar 

  • Rensink W A, Hart A, Liu J, Ouyang S, Zismann V, Buell C R (2005) Analyzing the potato abiotic stress transcriptome using Expressed Sequence Tags. Genome 48:598–605

    Article  PubMed  Google Scholar 

  • Ronning CM, Stegalkina S, Ascenzi R, Bougri O, Hart A, Utterback T, Vanaken S, Reidmuller S, White J, Cho J, Karamycheva S, Pertea GM, Lee Y, Karamycheva S, Sultana R, Tsai J, Quackenbush J, Griffiths HM, Restrepo S, Smart CD, Fry WE, van der Hoeven R, Tanksley S, Zhang P, Jin H, Yamamoto M, Baker BJ, Buell CR (2003) Comparative analyses of potato Expressed Sequence Tag libraries. Plant Physiol 131:419–429

    Article  PubMed  Google Scholar 

  • Schultz RP (1999) Loblolly: the pine for the 21st century. New Forests 17:71–88

    Article  Google Scholar 

  • Singh H (1978) Embryology of gymnosperms. In: Zimmerman W, Ozenda P, Wulff HD (eds) Handbuch der pflanzenanatomie. Gebrüder Borntraeger, Berlin, Stuttgart, pp 187–241

    Google Scholar 

  • Soares MB, Bonaldo MF, Jelene P, Su L, Lawton L, Efstratiadis A (1994) Construction and characterization of a normalized cDNA library. Proc Natl Acad Sci USA 91:9228–9232

    Article  PubMed  CAS  Google Scholar 

  • The Gene Ontology Consortium (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29

    Article  CAS  Google Scholar 

  • Theißen G, Becker A (2004) Gymnosperm orthologues of class B floral homeotic genes and their impact on understanding flower origin. Crit Revs Plant Sci 23:129–148

    Article  CAS  Google Scholar 

  • Tzafrir I, Pena-Muralla R, Dickerman A, Berg M, Rogers R, Hutchens S, Sweeney TC, McElver J, Aux G, Patton D, Meinke D (2004) Identification of genes required for embryo development in Arabidopsis. Plant Physiol 135:1206–1220

    Article  PubMed  CAS  Google Scholar 

  • Tzafrir I, Dickerman A, Brazhnik O, Nguyen Q, McElver J, Frye C, Patton D, Meinke D (2003) The Arabidopsis seed genes project. Nucleic Acids Res 31:90–93

    Article  PubMed  CAS  Google Scholar 

  • Ujino-Ihara T, Kanamori H, Yamane H, Taguchi Y, Namiki N, Mukai Y, Yoshimura K, Tsumura Y (2005) Comparative analysis of expressed sequence tags of conifers and angiosperms reveals sequences specifically conserved in conifers. Plant Mol Biol 59:895–907

    Article  PubMed  CAS  Google Scholar 

  • von Arnold S, Sabala I, Bozhkov P, Dyachok J, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell, Tiss Org Cult 69:233–249

    Article  Google Scholar 

  • Wu X, Dabi T, Weigel D (2005) Requirement of homeobox gene STIMPY/WOX9 for Arabidopsis meristem growth and maintenance. Curr Biol 15:436–440

    Article  PubMed  CAS  Google Scholar 

  • Yuan Q, Ouyang S, Wang A, Zhu W, Maiti R, Lin H, Hamilton J, Haas B, Sultana R, Cheung F et al (2005) The Institute for Genomic Research Osa1 rice genome annotation database. Plant Physiol 138:18–26

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported through a grant from the National Science Foundation Plant Genome Research Program to J. Cairney and C.R. Buell (DBI-0217594). The assistance of the J. Craig Venter Joint Technology Center, the TIGR Sequencing Facility and the TIGR IT Group are acknowledged. All cDNA clones can be obtained from The Institute for Genomic Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Robin Buell.

Additional information

John Cairney, Li Zheng—These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cairney, J., Zheng, L., Cowels, A. et al. Expressed Sequence Tags from loblolly pine embryos reveal similarities with angiosperm embryogenesis. Plant Mol Biol 62, 485–501 (2006). https://doi.org/10.1007/s11103-006-9035-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-006-9035-9

Keywords

Navigation