Skip to main content
Log in

A developmentally regulated GTP binding tyrosine phosphorylated protein A-like cDNA in cucumber (Cucumis sativus L.)

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Cucumber (Cucumis sativus) is a monoecious plant that serves as a model for the study of floral sex determination. The genetic background, hormonal and environmental factors regulating unisexual flower development are well characterized, however, the molecular mechanisms are less well understood. To isolate genes involved in male and female flower development we conducted a differential cDNA-Amplified Fragment Length Polymorphism analysis using plant growth apices of predominantly male (monoecious) and female (gynoecious) near isogenic cucumber lines. The plant apices of monoecious cucumbers carry bisexual and unisexual male floral buds while gynoecious ones carry bisexual and unisexual female floral buds. We isolated a cDNA fragment that encodes a putative GTP binding tyrosine phosphorylated protein A (CsTypA1) that is developmentally regulated. CsTypA1 is expressed in stamen primordia and its transcript is more abundant in monoecious plant apices implying a role for CsTypA1 in the early stages of male reproductive organ development. At later stages of flower development a higher transcript level is observed in female flowers in stigmatic papilla, nectary and in particular ovule/ovary tissue. The differential expression of CsTypA1 during male and female flower development indicates a role for CsTypA1 in female flower development, in particular that of the ovary/ovule. Thus, CsTypA1 might have a dual role, one in the early stages of flower development, possibly during sex determination, and the other in the development of the ovary/ovule. This is the first report of a gene encoding a putative TypA in the plant kingdom that is differentially expressed during plant development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AFLP:

Amplified Fragment Length Polymorphism

TypA:

GTP binding tyrosine phosphorylated protein A

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Ando S, Sakai S (2002) Isolation of an ethylene-responsive gene (ERAF16) for a putative methyltransferase and correlation of ERAF16 gene expression with female flower formation in cucumber plants (Cucumis sativus). Physiol Plant 116:213–222

    Article  PubMed  CAS  Google Scholar 

  • Ando S, Sato Y, Kamachi S, Sakai S (2001) Isolation of a MADS-box gene (ERAF17) and correlation of its expression with the induction of formation of female flowers by ethylene in cucumber plants (Cucumis sativus L.). Planta 213:943–952

    Article  PubMed  CAS  Google Scholar 

  • Bai SL, Peng YB, Cui JX, Gu HT, Xu LY, Li YQ, Xu ZH, Bai SN (2004) Developmental analyses reveal early arrests of the spore-bearing parts of reproductive organs in unisexual flowers of cucumber (Cucumis sativus L.). Planta 220:230–240

    Article  PubMed  CAS  Google Scholar 

  • Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16:10881–10890

    Article  PubMed  CAS  Google Scholar 

  • Farris M, Grant A, Richardson TB, O’Connor CD (1998) BipA: a tyrosine-phosphorylated GTPase that mediates interactions between enteropathogenic Escherichia coli (EPEC) and epithelial cells. Mol Microbiol 28:265–279

    Article  PubMed  CAS  Google Scholar 

  • Freestone P, Trinei M, Clarke SC, Nystrom T, Norris V (1998) Tyrosine phosphorylation in Escherichia coli. J Mol Biol 279:1045–1051

    Article  PubMed  CAS  Google Scholar 

  • Grant AJ, Farris M, Alefounder P, Williams PH, Woodward MJ, O’Connor CD (2003) Co-ordination of pathogenicity island expression by the BipA GTPase in enteropathogenic Escherichia coli (EPEC). Mol Microbiol 48:507–521

    Article  PubMed  CAS  Google Scholar 

  • Jackson D (1991) In situ hybridization in plants. In: Gurr SJ, McPherson M, Bowles DJ (eds) Molecular plant pathology: a practical approach. Oxford University Press, Oxford, pp 163–174

    Google Scholar 

  • Kahana A, Silberstein L, Kessler N, Goldstein RS, Perl-Treves R (1999) Expression of ACC oxidase genes differs among sex genotypes and sex phases in cucumber. Plant Mol Biol 41:517–528

    Article  PubMed  CAS  Google Scholar 

  • Kashkush K, Feldman M, Levy AA (2002) Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics 160:1651–1659

    PubMed  CAS  Google Scholar 

  • Kiss E, Huguet T, Poinsot V, Batut J (2004) The typA gene is required for stress adaptation as well as for symbiosis of Sinorhizobium meliloti 1021 with certain Medicago truncatula lines. Mol Plant-Microbe Interact 17:235–244

    Article  PubMed  CAS  Google Scholar 

  • Lalanne E, Michaelidis C, Moore JM, Gagliano W, Johnson A, Patel R, Howden R, Vielle-Calzada JP, Grossniklaus U, Twell D (2004) Analysis of transposon insertion mutants highlights the diversity of mechanisms underlying male progamic development in Arabidopsis. Genetics 167:1975–1986

    Article  PubMed  CAS  Google Scholar 

  • Lebel-Hardenack S, Grant SR (1997) Genetics of sex determination in flowering plants. Trends Plant Sci 2:130–136

    Article  Google Scholar 

  • Levi A, Thomas C (1999) An improved procedure for isolation of high quality DNA from watermelon and melon leaves. Cucurbit Genet Coop Rep 22:41–42

    Google Scholar 

  • Malepszy S, Niermirowicz-Szczytt K (1991) Sex determination in cucumber (Cucumis sativus) as a model system for molecular biology. Plant Sci 80:39–47

    Article  Google Scholar 

  • Marchler-Bauer A, Anderson JB, Cherukuri PF, DeWweese-Scott C, Geer LY, Gwadz M, He SQ, Hurwitz DI, Jackson JD, Ke ZX, Lanczycki CJ, Liebert CA, Liu CL, Lu F, Marchler GH, Mullokandov M, Shoemaker BA, Simonyan V, Song JS, Thiessen PA, Yamashita RA, Yin JJ, Zhang DC, Bryant SH (2005) CDD: a conserved domain database for protein classification. Nucleic Acids Res 33:D192–D196

    Article  PubMed  CAS  Google Scholar 

  • Mibus H, Tatlioglu T (2004) Molecular characterization and isolation of the F/f gene for femaleness in cucumber (Cucumis sativus L.). Theor Appl Genet 109:1669–1676

    Article  PubMed  CAS  Google Scholar 

  • Owens RM, Pritchard G, Skipp P, Hodey M, Connell SR, Nierhaus KH, O’Connor CD (2004) A dedicated translation factor controls the synthesis of the global regulator Fis. EMBO J 23:3375–3385

    Article  PubMed  CAS  Google Scholar 

  • Perl-Treves R (1999) Male to female conversion along the cucumber shoot: approaches to studying sex genes and floral development in Cucumis sativus. In: Ainsworth CC (ed) Sex determination in plants. BIOS Scientific Publishers Ltd., Oxford, pp 189–215

    Google Scholar 

  • Qi SY, Li Y, Szyroki A, Giles IG, Moir A, Oconnor CD (1995) Salmonella typhimurium responses to a bactericidal protein from human neutrophils. Mol Microbiol 17:523–531

    Article  PubMed  CAS  Google Scholar 

  • Rimon Knopf R, Trebitsh T (2006) The female-specific Cs-ACS1G gene of cucumber. A case of gene duplication and recombination between the non-sex-specific 1-aminocyclopropane-1-carboxylate synthase gene and a branched-chain amino acid transaminase gene. Plant Cell Physiol 47:1217–1228

    Article  CAS  Google Scholar 

  • Rudich J (1990) Biochemical aspects of hormonal regulation of sex expression in Cucurbits. In: Bates DM, Robinson RW, Jeffrey C (eds) Biology and utilization of the cucurbitaceae. Cornell Univ Press, Ithaca, pp 269–280

    Google Scholar 

  • Saraf-Levy T, Kahana A, Kessler N, Silberstein L, Wang Y, Gal-On A, Perl-Treves R (2000) Genes involved in ethylene synthesis and perception in cucumber. Acta Hortic 510:463–470

    CAS  Google Scholar 

  • Tamura K, Dudley J, Nel M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599

    Google Scholar 

  • Terefe D, Tatlioglu T (2005) Isolation of a partial sequence of a putative nucleotide sugar epimerase, which may involve in stamen development in cucumber (Cucumis sativus L.). Theor Appl Genet 111:1300–1307

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Trebitsh T, Staub JE, O’Neill SD (1997) Identification of a 1-aminocyclopropane-1-carboxylic acid synthase gene linked to the Female (F) locus that enhances female sex expression in cucumber. Plant Physiol 113:987–995

    Article  PubMed  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 21:4407–4414

    Article  Google Scholar 

  • Wawrzynska A, Lewandowska M, Hawkesford MJ, Sirko A (2005) Using a suppression subtractive library-based approach to identify tobacco genes regulated in response to short-term sulphur deficit. J Exp Bot 56:1575–1590

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki S, Fujii N, Matsuura S, Mizusawa H, Takahashi H (2001) The M locus and ethylene-controlled sex determination in andromonoecious cucumber plants. Plant Cell Physiol 42:608–619

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki S, Fujii N, Takahashi H (2003) Characterization of ethylene effects on sex determination in cucumber plants. Sex Plant Rep 16:103–111

    Article  CAS  Google Scholar 

  • Yin TJ, Quinn JA (1995) Tests of a mechanistic model of one hormone regulating both sexes in Cucumis sativus (Cucurbitaceae). Amer J Bot 82:1537–1546

    Article  CAS  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Rachel Shami for her assistance in the cDNA-AFLP analysis. Prof. Dina Raveh is gratefully acknowledged for the critical reviewing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tova Trebitsh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barak, M., Trebitsh, T. A developmentally regulated GTP binding tyrosine phosphorylated protein A-like cDNA in cucumber (Cucumis sativus L.). Plant Mol Biol 65, 829–837 (2007). https://doi.org/10.1007/s11103-007-9246-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-007-9246-8

Keywords

Navigation