Skip to main content
Log in

Molecular regulation of somatic embryogenesis in potato: an auxin led perspective

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Potato internodal segments (INS) treated with the auxin 2,4-dichlorophenoxyacetic acid can be induced to develop somatic embryos upon their transfer to an auxin-free medium, while the continuous presence of auxin in the medium suppresses the progression of embryogenically-induced somatic cells to embryos. We have employed these contrasting pathways, in combination with potato microarrays representing circa 10,000 genes, to profile global gene expression patterns during the progression of somatic embryogenesis in potato. The induction phase, characterised by the presence of auxin, was analysed by the direct comparison of RNA isolated from freshly excised (0 days) and embryogenically induced (14 days) INS explants. RNAs from embryo-forming (withdrawal of auxin after 14 days) and embryo-inhibitory (continuous presence of auxin) conditions, isolated over a range of time-points until the emergence of somatic embryos, were compared in a loop design to identify auxin responsive genes putatively involved in the process of somatic embryogenesis. A total of 402 transcripts were found to be showing significant differential expression patterns during somatic embryogenesis ‘induction’ phase, 524 during ‘embryo-transition’ phase, while 44 transcripts were common to both phases. Functional classification of these transcripts, using Gene Ontology vocabularies (molecular and biological), revealed that a significant proportion of transcripts were involved in processes which are more relevant to somatic embryogenesis such as apoptosis, development, reproduction, stress and signal transduction. This is the first study profiling global gene expression patterns during true somatic embryogenesis initiated from mature and completely differentiated explants and has enabled the description of stage-specific expression patterns of a large number of genes during potato somatic embryogenesis (PSE). The significance of the key identified genes during critical stages of somatic embryogenesis is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-dichlorophenoxyacetic acid

GO:

Gene ontology

INS:

Internodal segment

PAT:

Polar auxin transport

PGR:

Plant growth regulators

PSE:

Potato somatic embryogenesis

References

  • Aharoni A, Keizer LCP, Van den Broeck HC, Blanco-Portales R, Munoz-Blanco J, Bois G et al (2002) Novel insight into vascular, stress, and auxin-dependent and -independent gene expression programs in strawberry, a non-climacteric fruit. Plant Physiol 129:1019–1031. doi:10.1104/pp.003558

    PubMed  CAS  Google Scholar 

  • Aleith F, Richter G (1991) Gene expression during induction of somatic embryogenesis in carrot cell suspensions. Planta 183:17–24. doi:10.1007/BF00197562

    CAS  Google Scholar 

  • Altschul SF, Thomas LM, Alejandro AS, Jinghui Z, Zheng Z, Webb M et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389

    PubMed  CAS  Google Scholar 

  • Anil VS, Rao KS (2000) Calcium-mediated signaling during sandalwood somatic embryogenesis: role for exogenous calcium as second messenger. Plant Physiol 123:1301–1311. doi:10.1104/pp.123.4.1301

    PubMed  CAS  Google Scholar 

  • Balestrazzi A, Bernacchia G, Pitto L, Luccarini G, Carbonera D (2001) Spatial expression of DNA topoisomerase I genes during cell proliferation in Daucus carota. Eur J Histochem 45:31–38

    PubMed  CAS  Google Scholar 

  • Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J et al (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44. doi:10.1038/nature03184

    PubMed  CAS  Google Scholar 

  • Boyer C, Hilbert JL, Vasseur J (1993) Embryogenesis related protein synthesis and accumulation during early acquisition of somatic embryogenesis competence in Cichorium. Plant Sci 93:41–53. doi:10.1016/0168-9452(93)90033-V

    CAS  Google Scholar 

  • Catala C, Rose JKC, York WS, Albersheim P, Darvill AG, Bennett AB (2001) Characterization of a tomato xyloglucan endotransglycosylase gene that is down-regulated by auxin in etiolated hypocotyls. Plant Physiol 127:1180–1192. doi:10.1104/pp.127.3.1180

    PubMed  CAS  Google Scholar 

  • Che P, Love TM, Frame BR, Wang K, Carriquiry AL, Howell SH (2006) Gene expression patterns during somatic embryo development and germination in maize Hi II callus cultures. Plant Mol Biol 62:1–14. doi:10.1007/s11103-006-9013-2

    PubMed  CAS  Google Scholar 

  • Cheong YH, Chang HS, Gupta R, Wang X, Zhu T, Luan S (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol 129:661–677. doi:10.1104/pp.002857

    PubMed  CAS  Google Scholar 

  • Chugh A, Khurana P (2002) Gene expression during somatic embryogenesis––recent advances. Curr Sci 83:715–730

    CAS  Google Scholar 

  • de Garcia E, Martinez S (1995) Somatic embryogenesis in Solanum tuberosum L. cv. Desiree from stem nodal sections. J Plant Physiol 145:526–530

    Google Scholar 

  • de Vries SC, Booij H, Meyerink P, Huisman G, Wilde HD, Thomas TL et al (1988) Acquisition of embryogenic potential in carrot cell-suspension cultures. Planta 176:196–204. doi:10.1007/BF00392445

    Google Scholar 

  • Dodeman VL, Ducreux G, Kreis M (1997) Zygotic embryogenesis versus somatic embryogenesis. J Exp Bot 48:1493–1509

    CAS  Google Scholar 

  • Feher A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Organ Cult 74:201–228. doi:10.1023/A:1024033216561

    CAS  Google Scholar 

  • Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T et al (2003) Efflux dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147–153. doi:10.1038/nature02085

    PubMed  CAS  Google Scholar 

  • Fry SC, Wangermann E (1976) Polar transport of auxin through embryos. New Phytol 77:313–317. doi:10.1111/j.1469-8137.1976.tb01520.x

    CAS  Google Scholar 

  • Fry SC, Smith RC, Renwick KF, Martin DJ, Hodge SK, Matthews KJ (1992) Xyloglucan endotransglycosylase, a new wall-loosening enzyme-activity from plants. Biochem J 282:821–828

    PubMed  CAS  Google Scholar 

  • Gehring WJ (1992) The homeobox in perspective. Trends Biochem Sci 17:277–280. doi:10.1016/0968-0004(92)90434-B

    PubMed  CAS  Google Scholar 

  • Geisler M, Murphy A (2006) The ABC of auxin transport: the role of p-glycoproteins in plant development. FEBS Lett 580:1094–1102. doi:10.1016/j.febslet.2005.11.054

    PubMed  CAS  Google Scholar 

  • Geldner N, Friml J, Stierhof YD, Jürgens G, Palme K (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413:425–428. doi:10.1038/35096571

    PubMed  CAS  Google Scholar 

  • Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P et al (2003) The Arabidopsis GNOM ARFGEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112:219–230. doi:10.1016/S0092-8674(03)00003-5

    PubMed  CAS  Google Scholar 

  • Giroux RW, Pauls KP (1997) Characterization of somatic embryogenesis-related cDNAs from alfalfa (Medicago sativa L.). Plant Mol Biol 33:393–404. doi:10.1023/A:1005786826672

    PubMed  CAS  Google Scholar 

  • Goldberg RB, Barker SJ, Perezgrau L (1989) Regulation of gene-expression during plant embryogenesis. Cell 56:149–160. doi:10.1016/0092-8674(89)90888-X

    PubMed  CAS  Google Scholar 

  • Gray DJ, Purohit A (1991) Somatic embryogenesis and development of synthetic seed technology. Crit Rev Plant Sci 10:33–61

    Google Scholar 

  • Grebe M, Friml J, Swarup R, Ljung K, Sandberg G, Terlou M et al (2002) Cell polarity signaling in Arabidopsis involves a BFA-sensitive auxin influx pathway. Curr Biol 12:329–334. doi:10.1016/S0960-9822(02)00654-1

    PubMed  CAS  Google Scholar 

  • Hays DB, Yeung EC, Pharis RP (2002) The role of gibberellins in embryo axis development. J Exp Bot 53:1747–1751. doi:10.1093/jxb/erf017

    PubMed  CAS  Google Scholar 

  • Hecht V, Vielle-Calzada JP, Hartog MV, Schmidt EDL, Boutilier K, Grossniklaus U et al (2001) The Arabidopsis somatic embryogenesis receptor kinase 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol 128:314 correction 2002. Plant Physiol 128:314

    Google Scholar 

  • Heidstra R, Welch D, Scheres B (2004) Mosaic analyses using marked activation and deletion clones dissect Arabidopsis SCARECROW action in asymmetric cell division. Genes Dev 18:1964–1969. doi:10.1101/gad.305504

    PubMed  CAS  Google Scholar 

  • Higashi K, Shiota H, Kamada H (1998) Patterns of expression of the genes for glutamine synthetase isoforms during somatic and zygotic embryogenesis in carrot. Plant Cell Physiol 39:418–424

    PubMed  CAS  Google Scholar 

  • Hilbert JL, Dubois T, Vasseur J (1992) Detection of embryogenesis related proteins during somatic embryo formation in Cichorium. Plant Physiol Biochem 30:733–741

    CAS  Google Scholar 

  • Hirt H, Pay A, Gyorgyey J, Bako L, Nemeth K, Bogre L et al (1991) Complementation of a yeast cell cycle mutant by an alfalfa cDNA encoding a protein kinase homologous to P34Cdc2. Proc Natl Acad Sci USA 88:1636–1640. doi:10.1073/pnas.88.5.1636

    PubMed  CAS  Google Scholar 

  • Hovell HS (1998) Molecular genetics of plant development. Cambridge University Press, Cambridge

    Google Scholar 

  • Irani K, Xia Y, Zweier JL, Sollott SJ, Der CJ, Fearon ER et al (1997) Mitogenic signaling mediated by oxidants in ras-transformed fibroblasts. Science 275:1649–1652. doi:10.1126/science.275.5306.1649

    PubMed  CAS  Google Scholar 

  • Ishiguro S, Kawai-Oda A, Ueda J, Nishida I, Okada K (2001) The defective in anther ehiscence1 gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell 13:2191–2209

    PubMed  CAS  Google Scholar 

  • JayaSree T, Pavan U, Ramesh M, Rao AV, Reddy KJM, Sadanandam A (2001) Somatic embryogenesis from leaf cultures of potato. Plant Cell Tissue Organ Cult 64:13–17. doi:10.1023/A:1010697608689

    CAS  Google Scholar 

  • Jimenez VM (2001) Regulation of in vitro somatic embryogenesis with emphasis on the role of endogenous hormones. Revista Brasileira de Fisiologia Vegetal 13:196–223

    Google Scholar 

  • Jofuku KD, Denboer BGW, van Montagu M, Okamuro JK (1994) Control of Arabidopsis flower and seed development by the homeotic gene Apetala2. Plant Cell 6:1211–1225

    PubMed  CAS  Google Scholar 

  • Kagaya Y, Toyoshima R, Okuda R, Usui H, Yamamoto A, Hattori T (2005) LEAFY COTYLEDON1 controls seed storage protein genes through its regulation of FUSCA3 and ABSCISIC ACID INSENSITIVE3. Plant Cell Physiol 46:399–406. doi:10.1093/pcp/pci048

    PubMed  CAS  Google Scholar 

  • Kawasaki T, Henmi K, Ono E, Hatakeyama S, Iwano M, Satoh H et al (1999) The small GTP-binding protein Rac is a regulator of cell death in plants. Proc Natl Acad Sci USA 96:10922–10926. doi:10.1073/pnas.96.19.10922

    PubMed  CAS  Google Scholar 

  • Kermode AR (1990) Regulatory mechanisms involved in the transition from seed development to germination. Crit Rev Plant Sci 9:155–195

    Article  CAS  Google Scholar 

  • Kim SY, Chung HJ, Thomas TL (1997) Isolation of a novel class of bZIP transcription factors that interact with ABA-responsive and embryo-specification elements in the Dc3 promoter using a modified yeast one-hybrid system. Plant J 11:1237–1251. doi:10.1046/j.1365-313X.1997.11061237.x

    PubMed  CAS  Google Scholar 

  • Knox JP (1997) The use of antibodies to study the architecture and developmental regulation of plant cell walls. Int Rev Cytol––A Survey Cell Biol 171:79–120

    CAS  Google Scholar 

  • Komamine A, Murata N, Nomura K (2005) Mechanisms of somatic embryogenesis in carrot suspension cultures––morphology, physiology, biochemistry, and molecular biology. In Vitro Cell Dev Biol Plant 41:6–10. doi:10.1079/IVP2004593

    CAS  Google Scholar 

  • Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA 97:2940–2945. doi:10.1073/pnas.97.6.2940

    PubMed  CAS  Google Scholar 

  • Kreuger M, van Holst GJ (1993) Arabinogalactan proteins are essential in somatic embryogenesis of Daucus carota L. Planta 189:243–248. doi:10.1007/BF00195083

    CAS  Google Scholar 

  • Litz RE, Gray DJ (1995) Somatic embryogenesis for agricultural improvement. World J Microb Biot 11:416–425. doi:10.1007/BF00364617

    Google Scholar 

  • Lotan T, Ohto M, Yee KM, West MAL, Lo R, Kwong RW et al (1998) Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93:1195–1205. doi:10.1016/S0092-8674(00)81463-4

    PubMed  CAS  Google Scholar 

  • Lyndon RF (1990) Plant development: the cellular basis. Unwin Hyman, London

    Google Scholar 

  • Ma HC, Mcmullen MD, Finer JJ (1994) Identification of a homeobox containing gene with enhanced expression during soybean (Glycine max L.) somatic embryo development. Plant Mol Biol 24:465–473. doi:10.1007/BF00024114

    PubMed  CAS  Google Scholar 

  • Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, Lawton KA et al (2000) The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet 26:403–410. doi:10.1038/82521

    PubMed  CAS  Google Scholar 

  • Mayer U, Ruiz RAT, Berleth T, Misera S, Jurgens G (1991) Mutations affecting body organization in the Arabidopsis embryo. Nature 353:402–407. doi:10.1038/353402a0

    Google Scholar 

  • Michniewicz M, Brewer PB, Friml J (2007) Polar auxin transport and asymmetric auxin distribution. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. American Society of Plant Biologists, Rockville. doi:10.1199/tab.0108, www.aspb.org/publications/arabidopsis/

  • Mordhorst AP, Toonen MAJ, de Vries SC (1997) Plant embryogenesis. Crit Rev Plant Sci 16:535–576

    Google Scholar 

  • Mullineaux P, Ball L, Escobar C, Karpinska B, Creissen G, Karpinski S (2000) Are diverse signalling pathways integrated in the regulation of Arabidopsis antioxidant defence gene expression in response to excess excitation energy? Philos Trans R Soc Lond B Biol Sci 355:1531–1540. doi:10.1098/rstb.2000.0713

    PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    CAS  Google Scholar 

  • Neutelings G, Domon JM, Membre N, Bernier F, Meyer Y, David A et al (1998) Characterization of a germin-like protein gene expressed in somatic and zygotic embryos of pine (Pinus caribaea Morelet). Plant Mol Biol 38:1179–1190. doi:10.1023/A:1006033622928

    PubMed  CAS  Google Scholar 

  • Nothnagel EA (1997) Proteoglycans and related components in plant cells. Int Rev Cytol––A Survey Cell Biol 174:195–291

    CAS  Google Scholar 

  • Overvoorde PJ, Grimes HD (1994) The role of calcium and calmodulin in carrot somatic embryogenesis. Plant Cell Physiol 35:135–144

    CAS  Google Scholar 

  • Paponov IA, Teale WD, Trebar M, Blilou K, Palme K (2005) The PIN auxin efflux facilitators: evolutionary and functional perspectives. Trends Plant Sci 10:170–177. doi:10.1016/j.tplants.2005.02.009

    PubMed  CAS  Google Scholar 

  • Parry G, Marchant A, May S, Swarup R, Swarup K, James N et al (2001) Quick on the uptake: characterization of a family of plant auxin influx carriers. J Plant Growth Regul 20:217–225. doi:10.1007/s003440010030

    CAS  Google Scholar 

  • Pasternak TP, Prinsen E, Ayaydin F, Miskolczi P, Potters G, Asard H, Van Onckelen HA, Dudits D, Feher A (2002) The role of auxin, pH and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa. Plant Physiol 129:1807–1819

    PubMed  CAS  Google Scholar 

  • Paunesku T, Mittal S, Protic M, Oryhon J, Korolev SV, Joachimiak A et al (2001) Proliferating cell nuclear antigen (PCNA): ringmaster of the genome. Int J Radiat Biol 77:1007–1021. doi:10.1080/09553000110069335

    PubMed  CAS  Google Scholar 

  • Payne RW, Lane PW, Digby PGN, Harding SA, Leech PK, Morgan GW et al (1993) Genstat 5 release 3: reference manual. Oxford University Press, Oxford

    Google Scholar 

  • Petrášek J, Mravec J, Bouchard R, Blakeslee JJ, Abas M, Seifertová D et al (2006) PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312:914–918. doi:10.1126/science.1123542

    PubMed  Google Scholar 

  • Pfeiffer W, Hoftberger M (2001) Oxidative burst in Chenopodium rubrum suspension cells: induction by auxin and osmotic changes. Physiol Plantarum 111:144–150

    CAS  Google Scholar 

  • Poovaiah BW, Reddy ASN (1993) Calcium and signal transduction in plants. Crit Rev Plant Sci 12:185–211. doi:10.1080/713608046

    PubMed  CAS  Google Scholar 

  • Raghavan V (1997) Embryogenesis in angiosperms: a developmental and experimental study. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Reidt W, Wohlfarth T, Ellerstrom M, Czihal A, Tewes A, Ezcurra I et al (2000) Gene regulation during late embryogenesis: the RY motif of maturation-specific gene promoters is a direct target of the FUS3 gene product. Plant J 21:401–408. doi:10.1046/j.1365-313x.2000.00686.x

    PubMed  CAS  Google Scholar 

  • Reinert J (1958) Morphogenese und Ihre Kontrolle An Gewebekulturen aus Carotten. Naturwissenschaften 45:344–345. doi:10.1007/BF00640240

    CAS  Google Scholar 

  • Rensing SA, Lang D, Schumann E, Reski R, Hohe A (2005) EST sequencing from embryogenic Cyclamen persicum cell cultures identifies a high proportion of transcripts homologous to plant genes involved in somatic embryogenesis. J Plant Growth Regul 24:102–115. doi:10.1007/s00344-005-0033-y

    CAS  Google Scholar 

  • Rojas-Herrera R, Quiroz-Figueroa F, Sanchez-Teyer L, Loyola-Vargas VM (2002) Molecular analysis of somatic embryogenesis: an overview. Physiol Mol Biol Plants 8:171–184

    Google Scholar 

  • Rudus I, Kepczynska E, Kepczynski J (2002) Regulation of Medicago sativa L. somatic embryogenesis by gibberellins. Plant Growth Regul 36:91–95. doi:10.1023/A:1014751125297

    CAS  Google Scholar 

  • Santelia D, Vincenzetti V, Azzarello E, Bovet L, Fukao Y, Duchtig P et al (2005) MDR-like ABC transporter AtPGP4 is involved in auxin-mediated lateral root and root hair development. FEBS Lett 579:5399–5406. doi:10.1016/j.febslet.2005.08.061

    PubMed  CAS  Google Scholar 

  • Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC et al (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci USA 97:11655–11660. doi:10.1073/pnas.97.21.11655

    PubMed  CAS  Google Scholar 

  • Schmidt EDL, Guzzo F, Toonen MAJ, de Vries SC (1997) A leucine rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124:2049–2062

    PubMed  CAS  Google Scholar 

  • Scott MP, Tamkun JW, Hartzell GW (1989) The structure and function of the homeodomain. Biochim Biophys Acta 989:25–48

    PubMed  CAS  Google Scholar 

  • Seabrook JEA, Douglass LK (2001) Somatic embryogenesis on various potato tissues from a range of genotypes and ploidy levels. Plant Cell Rep 20:175–182. doi:10.1007/s002990000305

    CAS  Google Scholar 

  • Sharma SK (2006) The development of an efficient somatic embryogenesis system for the production of synthetic seed in potato. PhD thesis, University of Dundee, Dundee, United Kingdom

  • Sharma SK, Millam S (2004) Somatic embryogenesis in Solanum tuberosum L.: a histological examination of key developmental stages. Plant Cell Rep 23:115–119

    PubMed  CAS  Google Scholar 

  • Sharma SK, Millam S, Hein I, Bryan GJ (2008) Cloning and molecular characterisation of a potato SERK gene transcriptionally induced during initiation of somatic embryogenesis. Planta 228:319–330. doi:10.1007/s00425-008-0739-8

    PubMed  CAS  Google Scholar 

  • Shevell DE, Leu WM, Gillmor CS, Xia G, Feldmann KA, Chua NH (1994) EMB30 is essential for normal cell division, cell expansion, and cell adhesion in Arabidopsis and encodes a protein that has similarity to Sec7. Cell 77:1051–1062. doi:10.1016/0092-8674(94)90444-8

    PubMed  CAS  Google Scholar 

  • Somleva MN, Schmidt EDL, de Vries SC (2000) Embryogenic cells in Dactylis glomerata L. (Poaceae) explants identified by cell tracking and by SERK expression. Plant Cell Rep 19:718–726. doi:10.1007/s002999900169

    CAS  Google Scholar 

  • Sopory SK, Munshi M (1998) Protein kinases and phosphatases and their role in cellular signaling in plants. Crit Rev Plant Sci 17:245–318. doi:10.1080/07352689891304230

    CAS  Google Scholar 

  • Souer E, van Houwelingen A, Kloos D, Mol J, Koes R (1996) The no apical meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85:159–170. doi:10.1016/S0092-8674(00)81093-4

    PubMed  CAS  Google Scholar 

  • Stasolla C, Bozhkov PV, Chu TM, Van Zyl L, Egertsdotter U, Suarez MF et al (2004) Variation in transcript abundance during somatic embryogenesis in gymnosperms. Tree Physiol 24:1073–1085

    PubMed  CAS  Google Scholar 

  • Steinmann T, Geldner N, Grebe M, Mangold S, Jackson CL, Paris S et al (1999) Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science 286:316–318. doi:10.1126/science.286.5438.316

    PubMed  CAS  Google Scholar 

  • Sterk P, Booij H, Schellekens GA, van Kammen A, de Vries SC (1991) Cell-specific expression of the carrot EP2 lipid transfer protein gene. Plant Cell 3:907–921

    PubMed  CAS  Google Scholar 

  • Steward FC, Mapes MO, Mears K (1958) Growth and organized development of cultured cells. II. Organization in cultures grown from freely suspended cells. Am J Bot 45:705–708. doi:10.2307/2439728

    Google Scholar 

  • Sung ZR, Okimoto R (1981) Embryonic proteins in somatic embryos of carrot. Proc Natl Acad Sci USA 78:3683–3687. doi:10.1073/pnas.78.6.3683

    PubMed  CAS  Google Scholar 

  • Swain SM, Reid JB, Kamiya Y (1997) Gibberellins are required for embryo growth and seed development in pea. Plant J 12:1329–1338. doi:10.1046/j.1365-313x.1997.12061329.x

    CAS  Google Scholar 

  • Swarup R, Friml J, Marchant A, Ljung K, Sandberg G, Palme K et al (2001) Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes Dev 15:2648–2653. doi:10.1101/gad.210501

    PubMed  CAS  Google Scholar 

  • Swidzinski JA, Sweetlove LJ, Leaver CJ (2002) A custom microarray analysis of gene expression during programmed cell death in Arabidopsis thaliana. Plant J 30:431–446. doi:10.1046/j.1365-313X.2002.01301.x

    PubMed  CAS  Google Scholar 

  • Takatsuji H (1999) Zinc-finger proteins: the classical zinc finger emerges in contemporary plant science. Plant Mol Biol 39:1073–1078. doi:10.1023/A:1006184519697

    PubMed  CAS  Google Scholar 

  • Tanaka H, Dhonukshe P, Brewer PB, Friml J (2006) Spatiotemporal asymmetric auxin distribution: a means to coordinate plant development. Cell Mol Life Sci 63:2738–2754. doi:10.1007/s00018-006-6116-5

    PubMed  CAS  Google Scholar 

  • Terasaka K, Blakeslee JJ, Titapiwatanakun B, Peer WA, Bandyopadhyay A, Makam SN et al (2005) PGP4, an ATP binding cassette P-glycoprotein, catalyzes auxin transport in Arabidopsis thaliana roots. Plant Cell 17:2922–2939. doi:10.1105/tpc.105.035816

    PubMed  CAS  Google Scholar 

  • Thibaud-Nissen FO, Shealy RT, Khanna A, Vodkin LO (2003) Clustering of microarray data reveals transcript patterns associated with somatic embryogenesis in soybean. Plant Physiol 132:118–136. doi:10.1104/pp.103.019968

    PubMed  CAS  Google Scholar 

  • Timmers ACJ, de Vries SC, Schel JHN (1989) Distribution of membrane bound calcium and activated calmodulin during somatic embryogenesis of Carrot (Daucus carota L.). Protoplasma 153:24–29. doi:10.1007/BF01322461

    Google Scholar 

  • Tokuji Y, Kuriyama K (2003) Involvement of gibberellin and cytokinin in the formation of embryogenic cell clumps in carrot (Daucus carota). J Plant Physiol 160:133–141. doi:10.1078/0176-1617-00892

    PubMed  CAS  Google Scholar 

  • Toonen MAJ, Hendriks T, Schmidt EDL, Verhoeven HA, van Kammen A, de Vries SC (1994) Description of somatic embryo forming single cells in carrot suspension cultures employing video cell tracking. Planta 194:565–572. doi:10.1007/BF00714471

    CAS  Google Scholar 

  • Toonen MAJ, Verhees JA, Schmidt EDL, van Kammen A, de Vries SC (1997) AtLTP1 luciferase expression during carrot somatic embryogenesis. Plant J 12:1213–1221. doi:10.1046/j.1365-313X.1997.12051213.x

    PubMed  CAS  Google Scholar 

  • van Canneyt G, Sonnewald U, Hofgen R, Willmitzer L (1989) Expression of a patatin-like protein in the anthers of potato and sweet pepper flowers. Plant Cell 1:533–540

    Google Scholar 

  • van Engelen FA, de Vries SC (1992) Extracellular proteins in plant embryogenesis. Trends Genet 8:66–70

    PubMed  Google Scholar 

  • Vargas TE, De Garcia E, Oropeza M (2005) Somatic embryogenesis in Solanum tuberosum from cell suspension cultures: histological analysis and extracellular protein patterns. J Plant Physiol 162:449–456. doi:10.1016/j.jplph.2004.07.001

    PubMed  CAS  Google Scholar 

  • Wilde HD, Nelson WS, Booij H, de Vries SC, Thomas TL (1988) Gene expression programs in embryogenic and non-embryogenic carrot cultures. Planta 176:205–211. doi:10.1007/BF00392446

    CAS  Google Scholar 

  • Willats WGT, Knox JP (1996) A role for arabinogalactan-proteins in plant cell expansion: evidence from studies on the interaction of beta-glucosyl Yariv reagent with seedlings of Arabidopsis thaliana. Plant J 9:919–925. doi:10.1046/j.1365-313X.1996.9060919.x

    PubMed  CAS  Google Scholar 

  • Wilson JW, Wilson PMW (1993) Mechanisms of auxin regulation of structural and physiological polarity in plants, tissues, cells and embryos. Aust J Plant Physiol 20:555–571

    Article  CAS  Google Scholar 

  • Yeung EC (1995) Structural and developmental patterns in somatic embryogenesis. In: Thorpe TA (ed) In vitro Embryogenesis in Plants, Kluwer Academic Publishers, Dordrecht, pp 205–249

    Google Scholar 

  • Yeung EC, Stasolla C, Kong LS (1998) Apical meristem formation during zygotic embryo development of white spruce. Can J Botany-Revue Canadienne Botanique 76:751–761. doi:10.1139/cjb-76-5-751

    CAS  Google Scholar 

  • Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5:1411–1423

    PubMed  Google Scholar 

Download references

Acknowledgements

Sanjeev Kumar Sharma is grateful to the Government of India and the Commonwealth Scholarship Commission, United Kingdom for his doctoral Commonwealth Scholarship Award. The authors thank the TIGR Solanaceae Expression Profiling Service team for microarray processing. The authors are thankful to Drs. Craig Simpson and Wayne Morris (SCRI) for critical reading of the manuscript. SCRI is supported by a grant-in-aid from the Scottish Government Rural and Environment Research and Analysis Directorate (RERAD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glenn J. Bryan.

Electronic supplementary material

Supplemental Table S1

Expression profiles and Gene Ontology (GO) vocabularies (molecular and biological) of all significantly regulated transcripts during potato somatic embryogenesis. (XLS 458 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, S.K., Millam, S., Hedley, P.E. et al. Molecular regulation of somatic embryogenesis in potato: an auxin led perspective. Plant Mol Biol 68, 185–201 (2008). https://doi.org/10.1007/s11103-008-9360-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-008-9360-2

Keywords

Navigation