Skip to main content
Log in

Role of plant hormones in plant defence responses

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Plant hormones play important roles in regulating developmental processes and signaling networks involved in plant responses to a wide range of biotic and abiotic stresses. Significant progress has been made in identifying the key components and understanding the role of salicylic acid (SA), jasmonates (JA) and ethylene (ET) in plant responses to biotic stresses. Recent studies indicate that other hormones such as abscisic acid (ABA), auxin, gibberellic acid (GA), cytokinin (CK), brassinosteroids (BR) and peptide hormones are also implicated in plant defence signaling pathways but their role in plant defence is less well studied. Here, we review recent advances made in understanding the role of these hormones in modulating plant defence responses against various diseases and pests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94

    PubMed  CAS  Google Scholar 

  • Achard P, Renou JP, Berthome R, Harberd NP, Genschik P (2008) Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Curr Biol 18:656–660. doi:10.1016/j.cub.2008.04.034

    PubMed  CAS  Google Scholar 

  • Achuo EA, Prinsen E, Hofte M (2006) Influence of drought, salt stress and abscisic acid on the resistance of tomato to Botrytis cinerea and Oidium neolycopersici. Plant Pathol 55:178–186. doi:10.1111/j.1365-3059.2006.01340.x

    CAS  Google Scholar 

  • Adie BA, Perez-Perez J et al (2007) ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defences in Arabidopsis. Plant Cell 19:1665–1681. doi:10.1105/tpc.106.048041

    PubMed  CAS  Google Scholar 

  • Anderson JP, Badruzsaufari E, Schenk PM et al (2004) Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defence gene expression and disease resistance in Arabidopsis. Plant Cell 16:3460–3479. doi:10.1105/tpc.104.025833

    PubMed  CAS  Google Scholar 

  • Asselbergh B, Achuo AE, Hofte M, Van Gijsegem F (2008) Abscisic acid deficiency leads to rapid activation of tomato defence responses upon infection with Erwinia chrysanthemi. Mol Plant Pathol 9:11–24

    PubMed  CAS  Google Scholar 

  • Audenaert K, De Meyer GB, Hofte MM (2002) Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms. Plant Physiol 128:491–501. doi:10.1104/pp.128.2.491

    PubMed  CAS  Google Scholar 

  • Bajguz A (2007) Metabolism of brassinosteroids in plants. Plant Physiol Biochem 45:95–107. doi:10.1016/j.plaphy.2007.01.002

    PubMed  CAS  Google Scholar 

  • Balbi V, Devoto A (2008) Jasmonate signaling network in Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios. New Phytol 177:301–318

    PubMed  CAS  Google Scholar 

  • Beckers GJ, Spoel SH (2006) Fine-tuning plant defence signaling: salicylate versus jasmonate. Plant Biol Stuttg 8:1–10. doi:10.1055/s-2005-872705

    PubMed  CAS  Google Scholar 

  • Bodenhausen N, Reymond P (2007) Signaling pathways controlling induced resistance to insect herbivores in Arabidopsis. Mol Plant Microbe Interact 20:1406–1420. doi:10.1094/MPMI-20-11-1406

    PubMed  CAS  Google Scholar 

  • Brodersen P, Petersen M et al (2006) Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. Plant J 47:532–546. doi:10.1111/j.1365-313X.2006.02806.x

    PubMed  CAS  Google Scholar 

  • Broekaert WF, Delaure SL, De Bolle MF, Cammue BP (2006) The role of ethylene in host-pathogen interactions. Annu Rev Phytopathol 44:393–416. doi:10.1146/annurev.phyto.44.070505.143440

    PubMed  CAS  Google Scholar 

  • Browse J, Howe GA (2008) New weapons and a rapid response against insect attack. Plant Physiol 146:832–838. doi:10.1104/pp.107.115683

    PubMed  CAS  Google Scholar 

  • Chaturvedi R, Krothapalli K, Makandar R, Nandi A, Sparks AA, Roth MR, Welti R, Shah J (2008) Plastid omega3-fatty acid desaturase-dependent accumulation of a systemic acquired resistance inducing activity in petiole exudates of Arabidopsis thaliana is independent of jasmonic acid. Plant J 54:106–117. doi:10.1111/j.1365-313X.2007.03400.x

    PubMed  CAS  Google Scholar 

  • Chen Z, Agnew JL, Cohen JD, He P, Shan L, Sheen J, Kunkel BN (2007) Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis thaliana auxin physiology. Proc Natl Acad Sci USA 104:20131–20136. doi:10.1073/pnas.0704901104

    PubMed  CAS  Google Scholar 

  • Chinchilla D, Zipfel C, Robatzek S et al (2007) A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448:497–500. doi:10.1038/nature05999

    PubMed  CAS  Google Scholar 

  • Chini A, Fonseca S, Fernandez G, Adie BR et al (2007) The JAZ family of repressors is the missing link in jasmonate signaling. Nature 448:666–671. doi:10.1038/nature06006

    PubMed  CAS  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814

    PubMed  CAS  Google Scholar 

  • Cui J, Bahrami AK, Pringle EG, Hernandez-Guzman G, Bender CL, Pierce NE, Ausubel FM (2005) Pseudomonas syringae manipulates systemic plant defenses against pathogens and herbivores. Proc Natl Acad Sci USA 102:1791–1796

    PubMed  CAS  Google Scholar 

  • de Torres-Zabala M, Truman W, Bennett MH et al (2007) Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signaling pathway to cause disease. EMBO J 26:1434–1443. doi:10.1038/sj.emboj.7601575

    PubMed  Google Scholar 

  • De Vos M, Van Oosten VR, Van Poecke RM et al (2005) Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant Microbe Interact 18:923–937. doi:10.1094/MPMI-18-0923

    PubMed  Google Scholar 

  • Depuydt S, Dolezal K, Van Lijsebettens M, Moritz T, Holsters M, Vereecke D (2008) Modulation of the hormone setting by Rhodococcus fascians results in ectopic KNOX activation in Arabidopsis. Plant Physiol 146:1267–1281. doi:10.1104/pp.107.113969

    PubMed  CAS  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445. doi:10.1038/nature03543

    PubMed  CAS  Google Scholar 

  • Ding X, Cao Y, Huang L, Zhao J, Xu C, Li X, Wang S (2008) Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice. Plant Cell 20:228–240. doi:10.1105/tpc.107.055657

    PubMed  CAS  Google Scholar 

  • Dombrecht B, Xue GP et al (2007) MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell 19:2225–2245. doi:10.1105/tpc.106.048017

    PubMed  CAS  Google Scholar 

  • Dong X (2004) NPR1, all things considered. Curr Opin Plant Biol 7:547–552. doi:10.1016/j.pbi.2004.07.005

    PubMed  CAS  Google Scholar 

  • Ellis C, Karafyllidis I, Wasternack C, Turner JG (2002) The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses. Plant Cell 14:1557–1566

    PubMed  CAS  Google Scholar 

  • Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defence signaling. Curr Opin Plant Biol 10:366–371. doi:10.1016/j.pbi.2007.04.020

    PubMed  CAS  Google Scholar 

  • Farrokhi N, Whitelegge JP, Brusslan JA (2008) Plant peptides and peptidomics. Plant Biotechnol J 6:105–134. doi:10.1111/j.1467-7652.2007.00315.x

    PubMed  CAS  Google Scholar 

  • Flors V, Ton J, van Doorn R et al (2008) Interplay between JA, SA and ABA signaling during basal and induced resistance against Pseudomonas syringae and Alternaria brassicicola. Plant J 54:81–92. doi:10.1111/j.1365-313X.2007.03397.x

    PubMed  CAS  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defence against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227. doi:10.1146/annurev.phyto.43.040204.135923

    PubMed  CAS  Google Scholar 

  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pages V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Becard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194. doi:10.1038/nature07271

    PubMed  CAS  Google Scholar 

  • Grant M, Lamb C (2006) Systemic immunity. Curr Opin Plant Biol 9:414–420. doi:10.1016/j.pbi.2006.05.013

    PubMed  CAS  Google Scholar 

  • Griffiths J, Murase K, Rieu I, Zentella R, Zhang ZL, Powers SJ, Gong F, Phillips AL, Hedden P, Sun TP, Thomas SG (2006) Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell 18:3399–3414. doi:10.1105/tpc.106.047415

    PubMed  CAS  Google Scholar 

  • He K, Gou X, Yuan T, Lin H, Asami T, Yoshida S, Russell SD, Li J (2007) BAK1 and BKK1 regulate brassinosteroid-dependent growth and brassinosteroid-independent cell-death pathways. Curr Biol 17:1109–1115. doi:10.1016/j.cub.2007.05.036

    PubMed  CAS  Google Scholar 

  • Heese A, Hann DR, Gimenez-Ibanez S et al (2007) The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc Natl Acad Sci USA 104:12217–12222. doi:10.1073/pnas.0705306104

    PubMed  CAS  Google Scholar 

  • Hernandez-Blanco C, Feng DX, Hu J et al (2007) Impairment of cellulose synthases required for Arabidopsis secondary cell wall formation enhances disease resistance. Plant Cell 19:890–903. doi:10.1105/tpc.106.048058

    PubMed  CAS  Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66. doi:10.1146/annurev.arplant.59.032607.092825

    PubMed  CAS  Google Scholar 

  • Huffaker A, Pearce G, Ryan CA (2006) An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proc Natl Acad Sci USA 103:10098–10103. doi:10.1073/pnas.0603727103

    PubMed  CAS  Google Scholar 

  • Huffaker A, Ryan CA (2007) Endogenous peptide defense signals in Arabidopsis differentially amplify signaling for the innate immune response. Proc Natl Acad Sci USA 104:10732–10736

    PubMed  CAS  Google Scholar 

  • Igari K, Endo S, Hibara KI, Aida M, Sakakibara H, Kawasaki T, Tasaka M (2008) Constitutive activation of a CC-NB-LRR protein alters morphogenesis through the cytokinin pathway in Arabidopsis. Plant J 55:14–27

    PubMed  CAS  Google Scholar 

  • Jonak C, Hirt H (2002) Glycogen synthase kinase 3/SHAGGY-like kinases in plants: an emerging family with novel functions. Trends Plant Sci 7:457–461

    PubMed  CAS  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329. doi:10.1038/nature05286

    PubMed  CAS  Google Scholar 

  • Kahl J, Siemens DH, Aerts RJ, Gabler R, Kuhnemann F, Preston CA, Baldwin IT (2000) Herbivore-induced ethylene suppresses a direct defense but not a putative indirect defense against an adapted herbivore. Planta 210:336–342. doi:10.1007/PL00008142

    PubMed  CAS  Google Scholar 

  • Kaliff M, Staal J, Myrenas M, Dixelius C (2007) ABA is required for Leptosphaeria maculans resistance via ABI1- and ABI4-dependent signaling. Mol Plant Microbe Interact 20:335–345. doi:10.1094/MPMI-20-4-0335

    PubMed  CAS  Google Scholar 

  • Katsir L, Schilmiller AL, Staswick PE, He SY, Howe GA (2008) COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc Natl Acad Sci USA 105:7100–7105. doi:10.1073/pnas.0802332105

    PubMed  CAS  Google Scholar 

  • Kemmerling B, Schwedt A, Rodriguez P et al (2007) The BRI1-associated kinase 1, BAK1, has a Brassinoli-independent role in plant cell-death control. Curr Biol 17:1116–1122. doi:10.1016/j.cub.2007.05.046

    PubMed  CAS  Google Scholar 

  • Kempema LA, Cui X, Holzer FM, Walling LL (2007) Arabidopsis transcriptome changes in response to phloem-feeding silverleaf whitefly nymphs. Similarities and distinctions in responses to aphids. Plant Physiol 143:849–865. doi:10.1104/pp.106.090662

    PubMed  CAS  Google Scholar 

  • Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–451. doi:10.1038/nature03542

    PubMed  CAS  Google Scholar 

  • Koga H, Dohi K, Mori M (2004) Abscisic acid and low temperatures suppress the whole plant-specific resistance reaction of rice plants to the infection of Magnaporthe grisea. Physiol Mol Plant Pathol 65:3–9. doi:10.1016/j.pmpp.2004.11.002

    CAS  Google Scholar 

  • Koornneef A, Pieterse CM (2008) Cross talk in defence signaling. Plant Physiol 146:839–844. doi:10.1104/pp.107.112029

    PubMed  CAS  Google Scholar 

  • Krishna P (2003) Brassinosteroid-mediated stress responses. J Plant Growth Regul 22:289–297. doi:10.1007/s00344-003-0058-z

    PubMed  CAS  Google Scholar 

  • Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defence. Curr Opin Plant Biol 5:325–331. doi:10.1016/S1369-5266(02)00275-3

    PubMed  CAS  Google Scholar 

  • Kurosawa E (1926) Experimental studies on the nature of the substance secreted by the “bakanae” fungus. Nat Hist Soc Formosa 16:213–227

    Google Scholar 

  • Laurie-Berry N, Joardar V, Street IH, Kunkel BN (2006) The Arabidopsis thaliana JASMONATE INSENSITIVE 1 gene is required for suppression of salicylic acid-dependent defences during infection by Pseudomonas syringae. Mol Plant Microbe Interact 19:789–800. doi:10.1094/MPMI-19-0789

    PubMed  CAS  Google Scholar 

  • Lee GI, Howe GA (2003) The tomato mutant spr1 is defective in systemin perception and the production of a systemic wound signal for defense gene expression. Plant J 33:567–576. doi:10.1046/j.1365-313X.2003.01646.x

    PubMed  CAS  Google Scholar 

  • Leyser O (2006) Dynamic integration of auxin transport and signaling. Curr Biol 16:R424–R433. doi:10.1016/j.cub.2006.05.014

    PubMed  CAS  Google Scholar 

  • Li J, Nam KH (2002) Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase. Science 295:1299–1301

    PubMed  CAS  Google Scholar 

  • Li L, Li C, Lee GI, Howe GA (2002a) Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato. Proc Natl Acad Sci USA 99:6416–6421. doi:10.1073/pnas.072072599

    PubMed  CAS  Google Scholar 

  • Li J, Wen J, Lease KA, Doke JT, Tax FE, Walker JC (2002b) BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110:213–222. doi:10.1016/S0092-8674(02)00812-7

    PubMed  CAS  Google Scholar 

  • Li C, Williams MM, Loh YT, Lee GI, Howe GA (2002c) Resistance of cultivated tomato to cell content-feeding herbivores is regulated by the octadecanoid-signaling pathway. Plant Physiol 130:494–503. doi:10.1104/pp.005314

    PubMed  CAS  Google Scholar 

  • Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defence. Plant Cell 16:319–331. doi:10.1105/tpc.016980

    PubMed  CAS  Google Scholar 

  • Li J, Brader G, Kariola T, Palva ET (2006) WRKY70 modulates the selection of signaling pathways in plant defence. Plant J 46:477–491. doi:10.1111/j.1365-313X.2006.02712.x

    PubMed  CAS  Google Scholar 

  • Llorente F, Muskett P, Sánchez-Vallet A, López G, Ramos B, Sánchez-Rodríguez C, Jordá L, Parker J, Molina A (2008) Repression of the auxin response pathway increases Arabidopsis susceptibility to necrotrophic fungi. Mol Plant 1:496–509

    Google Scholar 

  • Loake G, Grant M (2007) Salicylic acid in plant defence—the players and protagonists. Curr Opin Plant Biol 10:466–472. doi:10.1016/j.pbi.2007.08.008

    PubMed  CAS  Google Scholar 

  • Lorenzo O, Solano R (2005) Molecular players regulating the jasmonate signaling network. Curr Opin Plant Biol 8:532–540. doi:10.1016/j.pbi.2005.07.003

    PubMed  CAS  Google Scholar 

  • Lorenzo O, Piqueras R, Sanchez-Serrano JJ, Solano R (2003) ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defence. Plant Cell 15:165–178. doi:10.1105/tpc.007468

    PubMed  CAS  Google Scholar 

  • Lorenzo O, Chico JM et al (2004) JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defence responses in Arabidopsis. Plant Cell 16:1938–1950. doi:10.1105/tpc.022319

    PubMed  CAS  Google Scholar 

  • MacMillan J (2001) Occurrence of gibberellins in vascular plants, fungi, and bacteria. J Plant Growth Regul 20:387–442

    PubMed  CAS  Google Scholar 

  • Mao P, Duan M, Wei C, Li Y (2007) WRKY62 transcription factor acts downstream of cytosolic NPR1 and negatively regulates jasmonate-responsive gene expression. Plant Cell Physiol 48:833–842. doi:10.1093/pcp/pcm058

    PubMed  CAS  Google Scholar 

  • Matsubayashi Y, Sakagami Y (2006) Peptide hormones in plants. Annu Rev Plant Biol 57:649–674. doi:10.1146/annurev.arplant.56.032604.144204

    PubMed  CAS  Google Scholar 

  • Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant-pathogen interactions. Curr Opin Plant Biol 8:409–414. doi:10.1016/j.pbi.2005.05.015

    PubMed  CAS  Google Scholar 

  • McGrath KC, Dombrecht B, Manners JM et al (2005) Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiol 139:949–959. doi:10.1104/pp.105.068544

    PubMed  CAS  Google Scholar 

  • McGurl B, Pearce G, Orozco-Cardenas M, Ryan CA (1992) Structure, expression, and antisense inhibition of the systemin precursor gene. Science 255:1570–1573. doi:10.1126/science.1549783

    PubMed  CAS  Google Scholar 

  • Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126:969–980. doi:10.1016/j.cell.2006.06.054

    PubMed  CAS  Google Scholar 

  • Meyer Y, Siala W, Bashandy T et al (2008) Glutaredoxins and thioredoxins in plants. Biochim Biophys Acta 1783:589–600. doi:10.1016/j.bbamcr.2007.10.017

    PubMed  CAS  Google Scholar 

  • Miao Y, Zentgraf U (2007) The antagonist function of Arabidopsis WRKY53 and ESR/ESP in leaf senescence is modulated by the jasmonic and salicylic acid equilibrium. Plant Cell 19:819–830. doi:10.1105/tpc.106.042705

    PubMed  CAS  Google Scholar 

  • Midoh N, Iwata M (1996) Cloning and characterization of a probenazole-inducible gene for an intracellular pathogenesis-related protein in rice. Plant Cell Physiol 37:9–18

    PubMed  CAS  Google Scholar 

  • Mohr PG, Cahill DM (2001) Relative roles of glyceollin, lignin and the hypersensitive response and the influence of ABA in compatible and incompatible interactions of soybeans with Phytophthora sojae. Physiol Mol Plant Pathol 58:31–41. doi:10.1006/pmpp.2000.0306

    CAS  Google Scholar 

  • Mohr PG, Cahill DM (2003) Abscisic acid influences the susceptibility of Arabidopsis thaliana to Pseudomonas syringae pv. tomato and Peronospora parasitica. Funct Plant Biol 30:461–469. doi:10.1071/FP02231

    CAS  Google Scholar 

  • Mohr PG, Cahill DM (2007) Suppression by ABA of salicylic acid and lignin accumulation and the expression of multiple genes, in Arabidopsis infected with Pseudomonas syringae pv. tomato. Funct Integr Genomics 7:181–191. doi:10.1007/s10142-006-0041-4

    PubMed  CAS  Google Scholar 

  • Muessig C, Lisso J, Coll-Garcia D, Altmann T (2006) Molecular analysis of brassinosteroid action. Plant Biol Stuttg 8:291–296. doi:10.1055/s-2005-873043

    CAS  Google Scholar 

  • Muller B, Sheen J (2007) Advances in cytokinin signaling. Science 318:68–69. doi:10.1126/science.1145461

    PubMed  Google Scholar 

  • Mur LA, Kenton P et al (2006) The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol 140:249–262. doi:10.1104/pp.105.072348

    PubMed  CAS  Google Scholar 

  • Nakashita H, Yasuda M, Nitta T et al (2003) Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J 33:887–898. doi:10.1046/j.1365-313X.2003.01675.x

    PubMed  CAS  Google Scholar 

  • Nam KH, Li J (2002) BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell 110:203–212. doi:10.1016/S0092-8674(02)00814-0

    PubMed  CAS  Google Scholar 

  • Narvaez-Vasquez J, Ryan CA (2004) The cellular localization of prosystemin: a functional role for phloem parenchyma in systemic wound signaling. Planta 218:360–369. doi:10.1007/s00425-003-1115-3

    PubMed  CAS  Google Scholar 

  • Narvaez-Vasquez J, Pearce G, Ryan CA (2005) The plant cell wall matrix harbors a precursor of defense signaling peptides. Proc Natl Acad Sci USA 102:12974–12977. doi:10.1073/pnas.0505248102

    PubMed  CAS  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439. doi:10.1126/science.1126088

    PubMed  CAS  Google Scholar 

  • Navarro L, Bari R, Achard P, Lison P, Nemri A, Harberd NP, Jones JD (2008) DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling. Curr Biol 18:650–655. doi:10.1016/j.cub.2008.03.060

    PubMed  CAS  Google Scholar 

  • Ndamukong I, Abdallat AA, Thurow C, Fode B, Zander M, Weigel R, Gatz C (2007) SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1.2 transcription. Plant J 50:128–139. doi:10.1111/j.1365-313X.2007.03039.x

    PubMed  CAS  Google Scholar 

  • O’Donnell PJ, Schmelz EA, Moussatche P, Lund ST, Jones JB, Klee HJ (2003) Susceptible to intolerance—a range of hormonal actions in a susceptible Arabidopsis pathogen response. Plant J 33:245–257. doi:10.1046/j.1365-313X.2003.01619.x

    PubMed  CAS  Google Scholar 

  • Orozco-Cardenas M, McGurl B, Ryan CA (1993) Expression of an antisense prosystemin gene in tomato plants reduces resistance toward Manduca sexta larvae. Proc Natl Acad Sci USA 90:8273–8276. doi:10.1073/pnas.90.17.8273

    PubMed  CAS  Google Scholar 

  • Padmanabhan MS, Goregaoker SP, Golem S, Shiferaw H, Culver JN (2005) Interaction of the tobacco mosaic virus replicase protein with the Aux/IAA protein PAP1/IAA26 is associated with disease development. J Virol 79:2549–2558

    PubMed  CAS  Google Scholar 

  • Padmanabhan MS, Shiferaw H, Culver JN (2006) The Tobacco mosaic virus replicase protein disrupts the localization and function of interacting Aux/IAA proteins. Mol Plant Microbe Interact 19:864–873. doi:10.1094/MPMI-19-0864

    PubMed  CAS  Google Scholar 

  • Padmanabhan MS, Kramer SR et al (2008) Tobacco mosaic virus replicase-auxin/indole acetic acid protein interactions: reprogramming the auxin response pathway to enhance virus infection. J Virol 82:2477–2485. doi:10.1128/JVI.01865-07

    PubMed  CAS  Google Scholar 

  • Paponov I, Paponov M, Teale W, Menges M, Chkrabortee S, Murray J, Palme K (2008) Comprehensive transcriptome analysis of auxin responses in Arabidopsis. Mol Plant 1:321–337. doi:10.1093/mp/ssm021

    CAS  Google Scholar 

  • Park SW, Kaimoyo E, Kumar D et al (2007) Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318:113–116. doi:10.1126/science.1147113

    PubMed  CAS  Google Scholar 

  • Parry G, Estelle M (2006) Auxin receptors: a new role for F-box proteins. Curr Opin Cell Biol 18:152–156. doi:10.1016/j.ceb.2006.02.001

    PubMed  CAS  Google Scholar 

  • Paschold A, Halitschke R, Baldwin IT (2007) Co(i)-ordinating defenses: NaCOI1 mediates herbivore-induced resistance in Nicotiana attenuata and reveals the role of herbivore movement in avoiding defenses. Plant J 51:79–91. doi:10.1111/j.1365-313X.2007.03119.x

    PubMed  CAS  Google Scholar 

  • Pearce G, Ryan CA (2003) Systemic signaling in tomato plants for defense against herbivores. Isolation and characterization of three novel defense-signaling glycopeptide hormones coded in a single precursor gene. J Biol Chem 278:30044–30050. doi:10.1074/jbc.M304159200

    PubMed  CAS  Google Scholar 

  • Pearce G, Strydom D, Johnson S, Ryan CA (1991) A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253:895–897. doi:10.1126/science.253.5022.895

    PubMed  CAS  Google Scholar 

  • Pearce G, Moura DS, Stratmann J, Ryan CA (2001) Production of multiple plant hormones from a single polyprotein precursor. Nature 411:817–820. doi:10.1038/35081107

    PubMed  CAS  Google Scholar 

  • Pearce G, Siems WF, Bhattacharya R, Chen YC, Ryan CA (2007) Three hydroxyproline-rich glycopeptides derived from a single petunia polyprotein precursor activate defensin I, a pathogen defense response gene. J Biol Chem 282:17777–17784. doi:10.1074/jbc.M701543200

    PubMed  CAS  Google Scholar 

  • Penninckx IA, Thomma BP, Buchala A et al (1998) Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10:2103–2113

    PubMed  CAS  Google Scholar 

  • Petersen M, Brodersen P, Naested H et al (2000) Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell 103:1111–1120. doi:10.1016/S0092-8674(00)00213-0

    PubMed  CAS  Google Scholar 

  • Piroux N, Saunders K et al (2007) Geminivirus pathogenicity protein C4 interacts with Arabidopsis thaliana shaggy-related protein kinase AtSK eta, a component of the brassinosteroid signaling pathway. Virology 362:428–440. doi:10.1016/j.virol.2006.12.034

    PubMed  CAS  Google Scholar 

  • Ren F, Lu Y (2006) Overexpression of tobacco hydroxyproline-rich glycopeptide systemin precursor a gene in transgenic tobacco enhances resistance against Helicoverpa armigera larvae. Plant Sci 171:286–292. doi:10.1016/j.plantsci.2006.04.001

    CAS  Google Scholar 

  • Reymond P, Bodenhausen N, Van Poecke RM, Krishnamurthy V, Dicke M, Farmer EE (2004) A conserved transcript pattern in response to a specialist and a generalist herbivore. Plant Cell 16:3132–3147. doi:10.1105/tpc.104.026120

    PubMed  CAS  Google Scholar 

  • Robert-Seilaniantz A, Navarro L, Bari R, Jones JD (2007) Pathological hormone imbalances. Curr Opin Plant Biol 10:372–379. doi:10.1016/j.pbi.2007.06.003

    PubMed  CAS  Google Scholar 

  • Ryan CA (2000) The systemin signaling pathway: differential activation of plant defensive genes. Biochim Biophys Acta 1477:112–121

    PubMed  CAS  Google Scholar 

  • Sakakibara H, Kasahara H, Ueda N et al (2005) Agrobacterium tumefaciens increases cytokinin production in plastids by modifying the biosynthetic pathway in the host plant. Proc Natl Acad Sci USA 102:9972–9977. doi:10.1073/pnas.0500793102

    PubMed  CAS  Google Scholar 

  • Schenk PM, Kazan K et al (2000) Coordinated plant defence responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci USA 97:11655–11660. doi:10.1073/pnas.97.21.11655

    PubMed  CAS  Google Scholar 

  • Schilmiller AL, Howe GA (2005) Systemic signaling in the wound response. Curr Opin Plant Biol 8:369–377. doi:10.1016/j.pbi.2005.05.008

    PubMed  CAS  Google Scholar 

  • Shan L, He P, Li J, Heese A, Peck SC, Nurnberger T, Martin GB, Sheen J (2008) Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity. Cell Host Microbe 4:17–27. doi:10.1016/j.chom.2008.05.017

    PubMed  CAS  Google Scholar 

  • Siemens J, Keller I, Sarx J et al (2006) Transcriptome analysis of Arabidopsis clubroots indicate a key role for cytokinins in disease development. Mol Plant Microbe Interact 19:480–494. doi:10.1094/MPMI-19-0480

    PubMed  CAS  Google Scholar 

  • Spoel SH, Johnson JS, Dong X (2007) Regulation of tradeoffs between plant defences against pathogens with different lifestyles. Proc Natl Acad Sci USA 104:18842–18847. doi:10.1073/pnas.0708139104

    PubMed  CAS  Google Scholar 

  • Staswick PE, Tiryaki I (2004) The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16:2117–2127. doi:10.1105/tpc.104.023549

    PubMed  CAS  Google Scholar 

  • Staswick PE, Serban B et al (2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17:616–627. doi:10.1105/tpc.104.026690

    PubMed  CAS  Google Scholar 

  • Tanaka N, Matsuoka M et al (2006) gid1, a gibberellin-insensitive dwarf mutant, shows altered regulation of probenazole-inducible protein (PBZ1) in response to cold stress and pathogen attack. Plant Cell Environ 29:619–631. doi:10.1111/j.1365-3040.2005.01441.x

    PubMed  CAS  Google Scholar 

  • Thaler JS, Bostock RM (2004) Interactions between abscisic-acid-mediated responses and plant resistance to pathogens and insects. Ecology 85:48–58. doi:10.1890/02-0710

    Google Scholar 

  • Thilmony R, Underwood W, He SY (2006) Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157:H7. Plant J 46:34–53. doi:10.1111/j.1365-313X.2006.02725.x

    PubMed  CAS  Google Scholar 

  • Thines B, Katsir L, Melotto M et al (2007) JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signaling. Nature 448:661–665. doi:10.1038/nature05960

    PubMed  CAS  Google Scholar 

  • Thomma BP, Penninckx IA, Broekaert WF, Cammue BP (2001) The complexity of disease signaling in Arabidopsis. Curr Opin Immunol 13:63–68. doi:10.1016/S0952-7915(00)00183-7

    PubMed  CAS  Google Scholar 

  • Ton J, Mauch-Mani B (2004) Beta-amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose. Plant J 38:119–130. doi:10.1111/j.1365-313X.2004.02028.x

    PubMed  CAS  Google Scholar 

  • Truman W, Bennett MH, Kubigsteltig I, Turnbull C, Grant M (2007) Arabidopsis systemic immunity uses conserved defence signaling pathways and is mediated by jasmonates. Proc Natl Acad Sci USA 104:1075–1080. doi:10.1073/pnas.0605423104

    PubMed  CAS  Google Scholar 

  • Ueguchi-Tanaka M, Ashikari M et al (2005) GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437:693–698. doi:10.1038/nature04028

    PubMed  CAS  Google Scholar 

  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200. doi:10.1038/nature07272

    PubMed  CAS  Google Scholar 

  • van Loon LC, Rep M, Pieterse CM (2006) Significance of inducible defence-related proteins in infected plants. Annu Rev Phytopathol 44:135–162. doi:10.1146/annurev.phyto.44.070505.143425

    PubMed  Google Scholar 

  • Wang D, Amornsiripanitch N, Dong X (2006) A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathog 2:e123. doi:10.1371/journal.ppat.0020123

  • Wang D, Pajerowska-Mukhtar K, Culler AH, Dong X (2007) Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol 17:1784–1790. doi:10.1016/j.cub.2007.09.025

    PubMed  CAS  Google Scholar 

  • Wasilewskaa A, Vlad F, Sirichandra C et al (2008) An update on abscisic acid signaling in plants and more. Mol Plant 1:198–217

    Google Scholar 

  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot (Lond) 100:681–697

    CAS  Google Scholar 

  • Whenham RJ, Fraser RSS, Brown LP, Payne JA (1986) Tobacco-Mosaic-Virus-induced increase in abscisic-acid concentration in tobacco-leaves—intracellular location in light and dark-green areas, and relationship to symptom development. Planta 168:592–598. doi:10.1007/BF00392281

    CAS  Google Scholar 

  • Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot (Lond) 95:707–735. doi:10.1093/aob/mci083

    CAS  Google Scholar 

  • Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG (1998) COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280:1091–1094

    PubMed  CAS  Google Scholar 

  • Xing Y, Jia W, Zhang J (2008) AtMKK1 mediates ABA-induced CAT1 expression and H(2)O(2) production via AtMPK6-coupled signaling in Arabidopsis. Plant J 54:440–451. doi:10.1111/j.1365-313X.2008.03433.x

    PubMed  CAS  Google Scholar 

  • Yamada T (1993) The role of auxin in plant-disease development. Annu Rev Phytopathol 31:253–273. doi:10.1146/annurev.py.31.090193.001345

    PubMed  CAS  Google Scholar 

  • Yang DL, Li Q, Deng YW, Lou YG, Wang MY, Zhou GX, Zhang YY, He ZH (2008) Altered disease development in the eui mutants and eui overexpressors indicates that gibberellins negatively regulate rice basal disease resistance. Mol Plant 1:528–537

    Google Scholar 

  • Yasuda M, Ishikawa A, Jikumaru Y, Seki M, Umezawa T, Asami T, Maruyama-Nakashita A, Kudo T, Shinozaki K, Yoshida S, Nakashita H (2008) Antagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress response in Arabidopsis. Plant Cell 20:1678–1692. doi:10.1105/tpc.107.054296

    PubMed  CAS  Google Scholar 

  • Yi HC, Joo S, Nam KH, Lee JS, Kang BG, Kim WT (1999) Auxin and brassinosteroid differentially regulate the expression of three members of the 1-aminocyclopropane-1-carboxylate synthase gene family in mung bean (Vigna radiata L.). Plant Mol Biol 41:443–454. doi:10.1023/A:1006372612574

    PubMed  CAS  Google Scholar 

  • Zarate SI, Kempema LA, Walling LL (2007) Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses. Plant Physiol 143:866–875. doi:10.1104/pp.106.090035

    PubMed  CAS  Google Scholar 

  • Zhang ZQ, Li Q, Li ZM et al (2007) Dual regulation role of GH3.5 in salicylic acid and auxin signaling during Arabidopsis-Pseudomonas syringae interaction. Plant Physiol 145:450–464. doi:10.1104/pp.107.106021

    PubMed  CAS  Google Scholar 

  • Zheng SJ, Dicke M (2008) Ecological genomics of plant-insect interactions: from gene to community. Plant Physiol 146:812–817. doi:10.1104/pp.07.111542

    PubMed  CAS  Google Scholar 

  • Zhu S, Gao F, Cao X et al (2005) The rice dwarf virus P2 protein interacts with ent-kaurene oxidases in vivo, leading to reduced biosynthesis of gibberellins and rice dwarf symptoms. Plant Physiol 139:1935–1945. doi:10.1104/pp.105.072306

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We apologize to our colleagues whose work could not be cited in this review because of space limitations. We thank, Lionel Navarro, Alexandre Robert-Seilaniantz and Georgina Fabro for critical comments. The Sainsbury Lab is funded by the Gatsby Charitable Foundation. R. Bari is funded by a grant from the BBSRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan D. G. Jones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bari, R., Jones, J.D.G. Role of plant hormones in plant defence responses. Plant Mol Biol 69, 473–488 (2009). https://doi.org/10.1007/s11103-008-9435-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-008-9435-0

Keywords

Navigation